Aldrich, J. H., & Nelson, F. D. (1984). Linear Probability, Logit, and Probit Models. Beverly Hills: Sage University Papers Series. Quantitative Applications in the Social Sciences.
Allen, M. (2017). The SAGE Encyclopedia of COMMUNICATION RESEARCH METHODS. London: SAGE Publications, Inc.
AMERICAN PSYCHOLOGICAL ASSOCIATION. (2021, Julio 15). level. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/level
AMERICAN PYSCHOLOGICAL ASSOCIATION. (2021, Julio 15). factor. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/factor
Birnbaum, Z. W., & Sirken, M. G. (1950, Marzo). Bias Due to Non-Availability in Sampling Surveys. Journal of the American Statistical Association, 45(249), 98-111.
Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.
Instituto Nacional de Estadística y Censos de la República Argentina. (2019). Encuesta de Actividades de Niños, Niñas y Adolescentes 2016-2017. Factores de expansión, estimación y cálculo de los errores por muestra para el dominio rural. Buenos Aires: Ministerio de Hacienda. Retrieved from https://www.indec.gob.ar/ftp/cuadros/menusuperior/eanna/anexo_bases_eanna_rural.pdf
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.
Kolmogórov, A. N., & Fomin, S. V. (1978). Elementos de la Teoría de Funciones y del Análisis Funcional (Tercera ed.). (q. e.-m. Traducido del ruso por Carlos Vega, Trans.) Moscú: MIR.
Liao, T. F. (1994). INTERPRETING PROBABILITY MODELS. Logit, Probit, and Other Generalized Linear Models. Iowa: Sage University Papers Series. Quantitative Applications in the Social Sciences.
Lipschutz, S. (1992). Álgebra Lineal. Madrid: McGraw-Hill.
Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.
Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.
McCullagah, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.
McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.
Nelder, J. A., & Wedderburn, R. W. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, 135(3), 370-384.
Ritchey, F. (2002). ESTADÍSTICA PARA LAS CIENCIAS SOCIALES. El potencial de la imaginación estadística. México, D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.
Como se señala en (Aldrich & Nelson, 1984, págs. 30-31), la inferencia estadística comienza por asumir que el modelo que se va a estimar y utilizar para hacer inferencias está correctamente especificado. La presunción, i.e., el supuesto de partida, es que la teoría estadística-matemática correspondiente a tal o cual modelo estadístico es la que justifica el uso del mismo. Sin embargo, a lo planteado por los autores hay que agregar que es aún más importante que las propiedades reales del fenómeno a estudiar (establecidas por el marco científico mediante el cual se estudia) deben corresponderse en una magnitud mínima necesaria y suficiente con las propiedades matemáticas de tal o cual modelo estadístico. Los autores señalan que es bastante fácil demostrar que la especificación incorrecta del modelo tiene implicaciones realmente sustanciales, ya que todas las propiedades estadísticas de las estimaciones pueden destruirse. Para decirlo sin rodeos, la especificación incorrecta del modelo conduce a respuestas incorrectas.
Los autores también elaboran una maravilla gnoseológica en su argumentación, relativa a la justificación del difundido uso del supuesto de linealidad, estableciendo una versión modificada de la navaja de Occam, una que no implica reduccionismo filosófico, como sí lo suele ser la que utilizan, por ejemplo, los bayesianos subjetivos en los modelos parsimoniosos (y fue en ese sentido en el que la criticó también Albert Einstein):
“¿Por qué es tan popular la especificación lineal? Hay dos razones básicas (y relacionadas). En la práctica, los modelos lineales son matemáticamente simples, por lo que los estadísticos han podido aprender mucho sobre ellos, y se han escrito programas de computadora para hacer la estimación. Sobre bases teóricas, la simplicidad conduce a su adopción, justificada por una versión de la navaja de Occam: en ausencia de una guía teórica en sentido contrario, comience asumiendo el caso más simple. Así, la Navaja de Occam, por implicación, diría: Con alguna orientación teórica en sentido contrario, no asuma el caso más simple.” (Aldrich & Nelson, 1984, pág. 31).
La investigación completa se facilita en el siguiente documento: