JUSTIFICACIÓN TEÓRICA DEL USO DE MÉTODOS DE REGRESIÓN SOBRE INSTRUMENTOS PSICOMÉTRICOS: EL CASO DE LA ENCUESTA.

ISADORE NABI

Como señala (Cochran, 1991, pág. 195), “Uno de los rasgos de la estadística teórica es la creación de una vasta teoría que discute los métodos de obtención de buenas estimaciones a partir de los datos. En el desarrollo de la teoría, específicamente para encuestas de muestreo, se han utilizado poco estos conocimientos, por dos causas principales. Primero, en las encuestas que contienen un gran número de atributos, es una gran ventaja, aunque se disponga de máquinas computadoras, el poder utilizar procedimientos de estimación que requieran poco más que simples sumas, en tanto que los métodos superiores de estimación de la estadística teórica, como lo son la máxima verosimilitud, podrían necesitar una serie de aproximaciones sucesivas antes de encontrar una estimación (…) La mayoría de los métodos de investigación de la estadística teórica suponen que se conoce la forma funcional de la distribución de frecuencia que sigue a los datos de la muestra, y el método de estimación de estimación está cuidadosamente engranado de acuerdo a este tipo de distribución. En la teoría de encuestas por muestreo se ha preferido hacer, cuando más, algunos supuestos respecto a esta distribución de frecuencia. Esta actitud resulta razonable para tratar con encuestas en las que el tipo de distribución puede variar de un atributo a otro, y cuando no deseamos detenernos a examinarlas todas, antes de decidir cómo hacer cada estimación. En consecuencia, actualmente, las técnicas de estimación para el trabajo de encuestas por muestreo son de alcances restringidos. Ahora consideraremos dos técnicas, el método de razón (…) y el método de regresión línea (…)” Así, “Al igual que la estimación de razón, la regresión lineal se ha diseñado para incrementar la precisión en el uso de una variable auxiliar  correlacionada con .” (Cochran, 1991, pág. 239).

MODELO LOGIT O REGRESIÓN LOGÍSTICA

ISADORE NABI

Como se señala en (Aldrich & Nelson, 1984, págs. 30-31), la inferencia estadística comienza por asumir que el modelo que se va a estimar y utilizar para hacer inferencias está correctamente especificado. La presunción, i.e., el supuesto de partida, es que la teoría estadística-matemática correspondiente a tal o cual modelo estadístico es la que justifica el uso del mismo. Sin embargo, a lo planteado por los autores hay que agregar que es aún más importante que las propiedades reales del fenómeno a estudiar (establecidas por el marco científico mediante el cual se estudia) deben corresponderse en una magnitud mínima necesaria y suficiente con las propiedades matemáticas de tal o cual modelo estadístico. Los autores señalan que es bastante fácil demostrar que la especificación incorrecta del modelo tiene implicaciones realmente sustanciales, ya que todas las propiedades estadísticas de las estimaciones pueden destruirse. Para decirlo sin rodeos, la especificación incorrecta del modelo conduce a respuestas incorrectas.

Los autores también elaboran una maravilla gnoseológica en su argumentación, relativa a la justificación del difundido uso del supuesto de linealidad, estableciendo una versión modificada de la navaja de Occam, una que no implica reduccionismo filosófico, como sí lo suele ser la que utilizan, por ejemplo, los bayesianos subjetivos en los modelos parsimoniosos (y fue en ese sentido en el que la criticó también Albert Einstein):

“¿Por qué es tan popular la especificación lineal? Hay dos razones básicas (y relacionadas). En la práctica, los modelos lineales son matemáticamente simples, por lo que los estadísticos han podido aprender mucho sobre ellos, y se han escrito programas de computadora para hacer la estimación. Sobre bases teóricas, la simplicidad conduce a su adopción, justificada por una versión de la navaja de Occam: en ausencia de una guía teórica en sentido contrario, comience asumiendo el caso más simple. Así, la Navaja de Occam, por implicación, diría: Con alguna orientación teórica en sentido contrario, no asuma el caso más simple.” (Aldrich & Nelson, 1984, pág. 31).

La investigación completa se facilita en el siguiente documento:

ANÁLISIS DEL USO DEL CONTRASTE DE HIPÓTESIS EN EL CONTEXTO DE LA ESPECIFICACIÓN ÓPTIMA DE UN MODELO DE REGRESIÓN

ISADORE NABI