ISADORE NABI
La imagen del encabezado ha sido tomada de QuestionPro.
Science and Its Philosophy From a Marxist Perspective
Let be i.i.d. random variables with the cumulative distribution function (CDF) . The central limit theorem demonstrates that the sample mean is asymptotically normal (as long as has a finite second moment): where and are the mean and variance of the random variable with CDF . It turns out that for any , the th […]
Asymptotic normality of sample quantiles
La prueba de Kruskal-Wallis es el equivalente no paramétrico de un ANOVA (análisis de varianza). Kruskal-Wallis se usa cuando los investigadores comparan tres o más grupos independientes en un resultado continuo, pero se viola la suposición de homogeneidad de varianza entre los grupos en el análisis ANOVA. La prueba de Kruskal-Wallis es resistente a las violaciones de esta suposición estadística. Los investigadores deberán informar las medianas y los rangos intercuartílicos en lugar de las medias y las desviaciones estándar cuando utilicen la prueba de Kruskal-Wallis.
La figura presentada a continuación representa el uso de una prueba de Kruskal-Wallis cuando se viola la homogeneidad de la varianza. Se han cumplido los supuestos estadísticos de independencia de las observaciones y normalidad. Hay tres o más grupos independientes que se comparan entre sujetos. Sin embargo, no se ha cumplido el supuesto estadístico de homogeneidad de la varianza. Se utiliza una prueba de Kruskal-Wallis cuando no se cumple la homogeneidad de la varianza para un ANOVA.
Si las medias r-ésimas (los r-ésimos estadísticos de prueba) son únicas y existe convergencia en distribución entre las muestras en comparación distribución, estas tendrán también las mismas medias r-ésimas. Para garantizar la unicidad de los momentos debe garantizarse que la muestra y la población sean finitas o, a lo sumo, infinitas numerables (que sea posible poderla poner en correspondencia uno-a-uno con los números naturales); mientras que para garantizar que converjan en distribución debe garantizarse (aunque no es el único camino, más sí el óptimo para estos fines) antes la convergencia en media r-ésima, que para el caso de los espacios euclidianos y sus generalizaciones naturales (los espacios de Hilbert) debe ser convergencia en media cuadrática (porque la norma de tales espacios es de carácter cuadrático y sirve para estimar distancias bajo una lógica también cuadrática). Adicionalmente, en términos matemáticos, que converjan en media cuadrática garantiza que converjan en varianza. Que converjan en media cuadrática se verifica, en el contexto de los espacios ya mencionados, cuando se certifica a través de una prueba de hipótesis rigurosa que las medias de las dos poblaciones no difieren en términos estadísticamente significativos. Si el conjunto de condiciones anteriormente expuesto se cumple, entonces que dos muestras tengan la misma distribución y la misma media implica que su varianza será igual, lo que formalmente hablando implica que sus varianzas tenderán a ser iguales a medida se aproximen al tamaño de la población de la cual son parte. Debido a que una distribución no es caracterizada unívocamente por sus momentos sino por su función característica (si todos sus momentos son finitos), la cual es la solución a la ecuación integral generada tras la aplicación de la transformación de Fourier a la distribución de probabilidad en cuestión, la unicidad de los momentos implica formalmente hablando, además de la restricción antes impuesta sobre el tamaño de la muestra y la población, que las distribuciones de probabilidad tengan la misma función característica. Los parámetros de transformación de Fourier son, por definición, los mismos para todos los casos (a=1, b=1). El hecho de que las poblaciones sean o no sean homogéneas no es explícitamente relevante en términos teóricos puesto que la matemática pura no establece teoremas contemplando aspectos esenciales de los fenómenos que modela de manera abstracta-formal (garantiza que la heterogeneidad no sea un problema -en el terreno asintótico- al establecer los pre-requisitos antes mencionados, como se verá en el contexto aplicado). En términos aplicados es, sin lugar a dudas, completamente relevante porque puede tener implicaciones en que la diferencia en variabilidad de las muestras sea estadísticamente significativa; sin embargo, lo que se desprende en términos prácticos de lo expuesto teóricamente antes es que si dos muestras tienen la misma forma geométrica general (la misma distribución, que implica que los conjuntos de datos siguen el mismo patrón geométrico), más allá de variaciones de escala (producto de variaciones no significativas en los parámetros, es decir, variaciones que no cambian el tipo específico de distribución de la que se trate) y además existe convergencia en media (que es una forma rigurosa de expresar que, aproximadamente hablando, tendrán la misma media), también existirá convergencia en varianza, es decir, que las varianzas, diferirán a lo sumo, en una constante arbitraria C*, que se expresa teóricamente como el residuo de la solución a la ecuación integral antes mencionada. Por lo anterior, no es necesario realizar una prueba de potencia para la igualdad de varianzas establecida con prueba F, simplemente basta con verificar que las poblaciones sean las mismas, tengan el mismo tamaño de muestra y tengan la misma media para saber que tendrán la misma varianza o segundo momento.
Como se señala en (Dey, 2010, págs. 1-2), en determinadas situaciones experimentales, puede haber variaciones sistemáticas presentes entre las unidades experimentales[1]. Por ejemplo, en un experimento de campo, las unidades experimentales suelen ser parcelas de tierra. En un experimento de este tipo, puede haber un gradiente de fecundidad tal que las parcelas del mismo nivel de fecundidad sean más homogéneas que las que tienen distintos niveles de fecundidad. En experimentos con lechones como unidades experimentales, es muy plausible que los lechones pertenecientes a la misma camada estén genéticamente más cercanos entre sí (naciendo del mismo par de padres) que los que pertenecen a diferentes camadas. De manera similar, en experimentos con ganado, pueden estar involucradas diferentes razas (o diferentes edades) y se espera que los animales que pertenecen a la misma raza sean más parecidos que los que pertenecen a diferentes razas. En el contexto de los ensayos clínicos con pacientes que forman las unidades experimentales, el ensayo puede realizarse en diferentes centros (principalmente para obtener un número suficiente de observaciones) y los pacientes del mismo centro pueden ser más parecidos que los de diferentes centros debido a las diferencias en el tratamiento. prácticas y/o procedimientos de gestión seguidos en los diferentes centros. Los ejemplos anteriores, que son meramente ilustrativos y de ninguna manera exhaustivos, demuestran que en muchas situaciones existe una variación sistemática entre las unidades experimentales. En tales situaciones, el uso de un diseño completamente aleatorio no es apropiado. Más bien, se debe aprovechar la información a priori sobre esta variación sistemática mientras se diseña el experimento en el sentido de que esta información se debe utilizar durante el diseño para eliminar el efecto de dicha variabilidad. El impacto de este esfuerzo se verá reflejado en un error reducido, aumentando así la sensibilidad del experimento. Las consideraciones anteriores llevaron a la noción de control o bloqueo local. Los grupos de unidades experimentales relativamente homogéneas se denominan bloques. Cuando el bloqueo se realiza de acuerdo con un atributo, obtenemos un diseño de bloque. En un diseño de bloques, los tratamientos se aplican aleatoriamente a las unidades experimentales dentro de un bloque, y la asignación aleatoria de tratamientos a las unidades experimentales dentro de un bloque se realiza de forma independiente en cada bloque. El más simple entre los diseños de bloques es el diseño de bloques completos al azar.
Adicionalmente, (Batabyal, Sarkar, & Mandal, 2015, pág. 19) señalan que el experimento de gradiente de fertilidad (específicamente el del experimento por ellos analizado) se realizó antes del experimento del cultivo de prueba según la metodología inductiva propuesta por Ramamoorthy et al (1967), durante el verano de 2008-09, dividiendo el campo experimental en tres franjas rectangulares a lo largo del ancho. Los gradientes de fertilidad se crearon aplicando dosis graduadas de fertilizante N, P y K en las tiras como se muestra en la Tabla 1. El maíz forrajero se cultivó exhaustivamente para ayudar a que los fertilizantes se transformaran en el suelo por la planta y los microbios.
Figura 1
La referencia anterior permite comprender conceptualmente el concepto gradiente al que se refirió Aloke Day en penúltima referencia realizada, así como también generalizar conceptualmente lo expuesto por este autor. Así, expresando de forma abstracta lo anterior, puede afirmarse que, en ciertas condiciones experimentales, pueden presentarse variaciones sistemáticas entre las unidades experimentales. En tales experimentos, existe variabilidad diferenciada en la distribución de los datos muestrales en las subregiones del espacio de muestra (en la teoría del diseño muestral estas subregiones son conocidas como bloques) a causa de un conjunto de factores subyacentes (por ello se considera la variabilidad de carácter sistemático) y esa variabilidad diferenciada por regiones se expresa matemáticamente como un gradiente, es decir, como una matriz en cuyo interior se contienen las derivadas parciales de primer orden de la función objetivo (la que explica la propagación diferenciada de la variabilidad) evaluadas en las subregiones pertinentes. Esta es la forma usual en que en el contexto de la teoría del diseño de experimentos y los ensayos clínicos se maneja el problema de volatilidad diferenciada de la varianza. El concepto bloque formaliza la noción de control local e implica cierta homogeneidad mínima entre los elementos de cada grupo, tiene como objetivo diseñar el experimento de tal forma que se elimine el efecto de esta variabilidad sistemática. Por supuesto, en otros contextos aplicados distintos de los ensayos clínicos puede desearse analizar el comportamiento del fenómeno estudiado considerando los efectos que la variabilidad diferenciada de la varianza y por ello existen modelos como el de heterocedasticidad condicional autorregresiva. Cuando los bloques han sido organizados alrededor de un atributo se está en presencia de un diseño por bloques y, en tal escenario, las variables explicativas (los tratamientos experimentales, para el caso aplicado) son consideradas como aleatorias (se aplican aleatoriamente sobre las unidades experimentales -pacientes humanos o de otra especie- al interior de un bloque). Esto se establece bajo el supuesto de que la aplicación de tales tratamientos a los elementos de cada bloque es linealmente independiente o, lo que es lo mismo, que al realizar la operación producto vectorial (exterior) entre los vectores que contienen las variables consideradas como estocásticas se genera un sistema de ecuaciones homogéneo de solución no nula.
Como señala (Dey, 2010, pág. 3), el más simple entre los diseños de bloques es el diseño de bloques completos al azar. En tal diseño, se requiere que cada bloque tenga tantas unidades experimentales como el número de tratamientos a evaluar, es decir, el tamaño del bloque sea igual al número de tratamientos. Sin embargo, no siempre es posible adoptar un diseño de bloques completos al azar en cada situación experimental. En primer lugar, si se supone que la variación intrabloque depende directamente del tamaño del bloque, entonces es preferible la adopción de un diseño con bloques de tamaños pequeños a uno que tenga tamaños de bloque grandes. Esto restringe el uso de diseños de bloques completos al azar en situaciones donde el número de tratamientos es grande. Por ejemplo, en los experimentos agronómicos, el experimentador generalmente elige un bloque de tamaño 10-12 y, si se acepta, no se puede adoptar un diseño de bloque completo al azar en situaciones en las que, digamos, se van a comparar 20 tratamientos. Además, en muchas situaciones experimentales, el tamaño del bloque está determinado por la naturaleza del experimento. Por ejemplo, con algunos experimentos en psicología, es bastante común considerar a los dos miembros de un par de gemelos como unidades experimentales de un bloque. En ese caso, claramente no se puede realizar diseño de bloques completos al azar si el número de tratamientos es mayor que dos (puesto que por definición en cada bloque existirá únicamente una observación -. De manera similar, es razonable tomar a los compañeros de camada (por ejemplo, ratones) como unidades de un bloque y el tamaño de la camada puede no ser adecuado para acomodar todos los tratamientos bajo prueba.
Los pocos ejemplos considerados anteriormente muestran claramente que, en muchas situaciones, no se puede adoptar un diseño de bloques completos al azar y, por lo tanto, es necesario buscar diseños en los que no todos los tratamientos aparezcan en cada bloque. Estos diseños se denominan diseños de bloques incompletos. Como señala (Dey, 2010, págs. 3-4), el tipo de diseño más importante del conjunto de diseños balanceados es el diseño de bloques balanceado e incompleto (BIB, por su nombre en inglés) y sobre ellos debe decirse que estos todavía se encuentran útiles en el diseño de experimentos en diversos campos y en los últimos años se han encontrado aplicaciones más nuevas de estos diseños, por ejemplo, en criptografía visual (véase, por ejemplo, Bose y Mukerjee (2006), Adhikary, Bose, Kumar y Roy (2007) y las referencias allí citadas).
Como señala (Wikipedia, 2021), el diseño por bloques es una estructura de incidencia[2] consistente en un conjunto de elementos expresados en familias denominadas bloques, escogidos tal que las frecuencias de los elementos satisfacen ciertas condiciones que permiten que la colección de bloques exhiba simetría (balance de bloques). Si no se dan más especificaciones, usualmente por “diseño de bloques” se hace referencia a un diseño de bloques balanceado e incompleto. Se dice que un diseño está balanceado hasta τ si todos los subconjuntos τ del conjunto original se presentan (como evento estadístico) en la misma cantidad de bloques λ. Cuando τ no está especificado, generalmente se puede suponer que es 2, lo que significa que cada par de elementos se encuentra en el mismo número de bloques y el diseño está “balanceado por pares”. Cualquier diseño equilibrado hasta τ también está equilibrado en todos los valores más bajos de τ (aunque con diferentes valores para λ). Por ejemplo, un diseño balanceado por pares (τ=2) es también regular (τ=1). Cuando falla el requisito de equilibrio, un diseño puede estar parcialmente equilibrado si los subconjuntos τ se pueden dividir en n-ésimas clases, cada una con su correspondiente (y diferente) valor para λ.
Así, señala última fuente referida que, para el caso de τ=2, estos diseños por bloques se conocen como PBIB(n), cuyas clases forman un esquema de asociación[3]. La teoría de los esquemas de asociación generaliza la teoría de los caracteres de representación lineal de grupos (y, por consiguiente, los esquemas de asociación generalizan la noción de grupos). Por lo general, se asume que los diseños están incompletos, lo que significa que ningún bloque contiene todos los elementos del conjunto, descartando así un diseño trivial (esta es otra forma en que se expresa la creencia de la estadística matemática clásica de que, si en un sistema de ecuaciones una ecuación es linealmente dependiente de otra u otras, entonces la variable que es descrita mediante tal ecuación no aporta información relevante). Los diseños por bloques pueden tener (o no) bloques repetidos. Cuando no tienen bloques repetidos, se denominan simples, en cuyo caso la familia de bloques es un conjunto en lugar de un multiconjunto. En estadística, el diseño de bloques se extiende a diseños de bloques no binarios los cuales pueden contener múltiples copias de un elemento de X, lo que implica que un diseño es regular sólo si es también binario. La matriz de incidencia de un diseño no binario (véase más adelante) enlista el número de veces que cada elemento de repite en cada bloque.
Adicionalmente, como señala (Dey, 2010, pág. 4), existen generalizaciones de los diseños BIB. Los diseños BIB son los únicos diseños en la clase de diseños de experimentos binarios[4], equirreplicados[5] y propios[6] que son balanceados (según se definió antes) tanto en varianza como en eficiencia; sin embargo, es posible encontrar otros diseños con equilibrio de varianza y eficiencia si uno expande la clase de diseños a diseños no binarios, no equirreplicados o no apropiados. Los métodos de construcción de diseños balanceados en varianza y eficiencia con replicaciones posiblemente desiguales y tamaños de bloques desiguales son el estado del arte más avanzado en el ámbito de los diseños balanceados.
Además, como se señala en la última fuente referida, existen los diseños de experimentos por bloques parcialmente balanceados, dentro de los cuales los más estudiados y aplicados empíricamente son los diseños de bloques parcialmente balanceados (PBIB, por su nombre en inglés). Los diseños de PBIB se introducen formalmente mediante la noción de esquema de asociación antes definida. Existen diseños con dos o más clases asociadas, así como también otros diseños parcialmente balanceados que no son necesariamente diseños PBIB. Estos incluyen los diseños conocidos como de celosía, cíclico, bloque enlazado, diseños en C y diseños α.
Batabyal, K., Sarkar, D., & Mandal, B. (2015). Fertilizer-prescription equations for targeted yield in radish under integrated nutrient management system. Journal of Horticultural Sciences, X(1), 18-23. Obtenido de blob:resource://pdf.js/782dc541-51e4-4535-9551-8b7db5f35d1b
Dey, A. (2010). Incomplete Block Design. Tob Tuck Link, Singapore: World Scientific Publishing Co. Pte. Ltd.
Gupta, S. C., & Jones, B. (Agosto de 1983). Equireplicate Balanced Block Designs with Unequal Block Sizes. Biometrika, LXX(2), 433-440.
Shah, K. R., & Ashish, D. (Septiembre de 1992). Binary Designs Are Not Always the Bes. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, XX(3), 347-351.
Weisstein, E. W. (19 de Septiembre de 2021). Monoid. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/Monoid.html
Wikipedia. (6 de Julio de 2021). Block design. Obtenido de Design of experiments: https://en.wikipedia.org/wiki/Block_design
Wikipedia. (27 de Septiembre de 2021). Incidence structure. Obtenido de Incidence geometry: https://en.wikipedia.org/wiki/Incidence_structure
[1] La variabilidad diferenciada de la varianza se encuentra en la literatura bajo el nombre de homogeneidad de varianza u homocedasticidad. Sin embargo, debe señalarse que no necesariamente son equivalentes metodológicamente, lo cual se explica por el hecho de que filosófica e históricamente no lo son. La heterocedasticidad tiene su génesis conceptual en el contexto de las estructuras de datos conocidas como series temporales, mientras que la homogeneidad de varianza tiene su génesis histórica en las estructuras de datos de sección cruzada. La posibilidad de su divergencia metodológica puede verificarse si alguna prueba para varianza no se puede hacer para sección cruzada y sí se puede hacer para series temporales (y/o para datos de panel, lo cual sería necesario investigar) o, por supuesto, a la inversa, que se pueda realizar para datos de sección cruzada y/o de panel, mientras que no sea posible para datos de series temporales (o bien, que sea posible para una estructura de datos, mientras que para la otra y su estructura combinada -datos de panel- no sea posible). Si no son diferentes, resulta técnicamente adecuado (con el fin de evitar ambigüedades) hablar de variabilidad diferenciada de la varianza, en lugar de hablar de “homogeneidad de varianza” o “heterocedasticidad” (puesto que los diferenciaría en un contexto en que son equivalentes). Así, aunque la posibilidad de su equivalencia o divergencia conceptual sea una cuestión fundamentalmente filosófica, su diferenciación se encuentra en las minucias metodológicas de las distintas técnicas estadísticas para medir y clasificar la variabilidad de la varianza. Por supuesto, sus diferencias filosóficas están basada en un hecho histórico-técnico concreto innegable: ambas estructuras de datos son distintas.
[2] Como señala (Wikipedia, 2021), una estructura de incidencia es un sistema abstracto consistente en dos tipos de objeto y una relación única entre ellos que se conoce como estructura de incidencia Se consideran una generalización del concepto de plano. Por su definición, son una estructura métrica vinculada a una estructura algebraica.
[3] Un esquema de asociación es un concepto algebraico que generaliza la noción de grupo. Un grupo es un monoide en el que además se cumple que sus elementos son invertibles. Un monoide es un conjunto cerrado (el equivalente matemático de autocontenido) bajo una operación asociativa binaria y con elemento identidad I que pertenece a S tal que para todo elemento a que pertenece a S se cumple que I*a = a*I = a y se diferencia de un grupo en el sentido de que no exige que sus elementos sean invertibles bajo alguna operación. Véase (Weisstein, 2021).
[4] Como se señala en (Shah & Ashish, 1992, pág. 347), un diseño en el que cada tratamiento aparece como máximo una vez en cualquier bloque en particular.
[5] Como se señala en (Gupta & Jones, 1983, pág. 433), un diseño por bloques equirreplicado es aquel en el que las variables independientes (en el contexto de la bioestadística y la psicometría usualmente son los tipos de tratamiento) se repiten en cada bloque la misma cantidad de veces.
[6] Como se señala en (Wikipedia, 2021), un diseño por bloques es propio cuando todos los bloques tienen el mismo tamaño. También, como se señala en la fuente referida, se estudian también diseños por bloques que no son necesariamente uniformes; para τ=2 se conocen en la bibliografía bajo el nombre general de diseños equilibrados por pares, en donde cada par de elementos de X (cada par de elementos el conjunto de variables independientes) está contenido en exactamente en λ subconjuntos o bloques, en donde λ pertenece a los números naturales.
Banerjee, A. (29 de Octubre de 2019). Intuition behind model fitting: Overfitting v/s Underfitting. Obtenido de Towards Data Science: https://towardsdatascience.com/intuition-behind-model-fitting-overfitting-v-s-underfitting-d308c21655c7
Bhuptani, R. (13 de Julio de 2020). Quora. Obtenido de What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares
Cross Validated. (23 de Marzo de 2018). Will log transformation always mitigate heteroskedasticity? Obtenido de StackExchange: https://stats.stackexchange.com/questions/336315/will-log-transformation-always-mitigate-heteroskedasticity
Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.
Guanga, A. (11 de Octubre de 2018). Machine Learning: Bias VS. Variance. Obtenido de Becoming Human: Artificial Intelligence Magazine: https://becominghuman.ai/machine-learning-bias-vs-variance-641f924e6c57
Gujarati, D., & Porter, D. (8 de Julio de 2010). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Obtenido de Homocedasticidad.
McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.
MIT Computer Science & Artificial Intelligence Lab. (6 de Mayo de 2021). Solving over- and under-determined sets of equations. Obtenido de Articles: http://people.csail.mit.edu/bkph/articles/Pseudo_Inverse.pdf
Nabi, I. (27 de Agosto de 2021). MODELOS LINEALES GENERALIZADOS. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.files.wordpress.com/2021/08/modelos-lineales-generalizados-isadore-nabi.pdf
Penn State University, Eberly College of Science. (2018). 10.4 – Multicollinearity. Obtenido de Lesson 10: Regression Pitfalls: https://online.stat.psu.edu/stat462/node/177/
Penn State University, Eberly College of Science. (24 de Mayo de 2021). Introduction to Generalized Linear Models. Obtenido de Analysis of Discrete Data: https://online.stat.psu.edu/stat504/lesson/6/6.1
Perezgonzalez, J. D. (3 de Marzo de 2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. frontiers in PSYCHOLOGY, VI(223), 1-11.
ResearchGate. (10 de Noviembre de 2014). How it can be possible to fit the four-parameter Fedlund model by only 3 PSD points? Obtenido de https://www.researchgate.net/post/How_it_can_be_possible_to_fit_the_four-parameter_Fedlund_model_by_only_3_PSD_points
ResearchGate. (28 de Septiembre de 2019). s there a rule for how many parameters I can fit to a model, depending on the number of data points I use for the fitting? Obtenido de https://www.researchgate.net/post/Is-there-a-rule-for-how-many-parameters-I-can-fit-to-a-model-depending-on-the-number-of-data-points-I-use-for-the-fitting
Salmerón Gómez, R., Blanco Izquierdo, V., & García García, C. (2016). Micronumerosidad aproximada y regresión lineal múltiple. Anales de ASEPUMA(24), 1-17. Obtenido de https://dialnet.unirioja.es/descarga/articulo/6004585.pdf
Simon Fraser University. (30 de Septiembre de 2011). THE CLASSICAL MODEL. Obtenido de http://www.sfu.ca/~dsignori/buec333/lecture%2010.pdf
StackExchange Cross Validated. (2 de Febrero de 2017). “Least Squares” and “Linear Regression”, are they synonyms? Obtenido de What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms
Wikipedia. (18 de Marzo de 2021). Overdetermined system. Obtenido de Partial Differential Equations: https://en.wikipedia.org/wiki/Overdetermined_system
Zhao, J. (9 de Noviembre de 2017). More features than data points in linear regression? Obtenido de Medium: https://medium.com/@jennifer.zzz/more-features-than-data-points-in-linear-regression-5bcabba6883e
### DISTRIBUCIÓN CHI-CUADRADO
###ORÍGENES HISTÓRICOS Y GENERALIDADES: https://marxianstatistics.com/2021/09/10/generalidades-sobre-la-prueba-chi-cuadrado/
###En su forma general, la distribución Chi-Cuadrado es una suma de los cuadrados de variables aleatorias N(media=0, varianza=1), véase https://mathworld.wolfram.com/Chi-SquaredDistribution.html.
###Se utiliza para describir la distribución de una suma de variables aleatorias al cuadrado. También se utiliza para probar la bondad de ajuste de una distribución de datos, si las series de datos son independientes y para estimar las confianzas que rodean la varianza y la desviación estándar de una variable aleatoria de una distribución normal.
### COEFICIENTES DE CORRELACIÓN
###Coeficiente de Correlación de Pearson (prueba paramétrica): https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php, https://www.wikiwand.com/en/Pearson_correlation_coefficient.
###Coeficiente de Correlación de Spearman (prueba no-paramétrica): https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php, https://www.wikiwand.com/en/Spearman%27s_rank_correlation_coefficient, https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf.
###Coeficiente de Correlación de Kendall (prueba no-paramétrica): https://www.statisticshowto.com/kendalls-tau/, https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535, https://personal.utdallas.edu/~herve/Abdi-KendallCorrelation2007-pretty.pdf, https://www.wikiwand.com/en/Kendall_rank_correlation_coefficient.
####Como se verifica en su forma más general [véase Jeremy M. G. Taylor, Kendall’s and Spearman’s Correlation Coefficient in the Presence of a Blocking Variable, (Biometrics, Vol. 43, No. 2 (Jun., 1987), pp.409-416), p. 409], en presencia de “empates”, conocidos también como “observaciones vinculadas” (del inglés “ties”, que, como se verifica en http://www.statistics4u.com/fundstat_eng/dd_ties.html, significa en el contexto de las estadísticas de clasificación de orden -rank order statistics- la existencia de dos o más observaciones que tienen el mismo valor, por lo que imposibilita la asignación de números de rango únicos), es preferible utilizar el coeficiente de correlación de Spearman rho porque su varianza posee una forma más simple (relacionado con el costo computacional, puesto que la investigación de Jeremy Taylor emplea como herramienta de estadística experimental la metodología Monte Carlo, lo que puede verificarse en https://pdodds.w3.uvm.edu/files/papers/others/1987/taylor1987a.pdf).
### RIESGO RELATIVO
####Como se verifica en https://www.wikiwand.com/en/Odds_ratio, el riesgo relativo (diferente a la razón éxito/fracaso y a la razón de momios) es la proporción de éxito de un evento (o de fracaso) en términos del total de ocurrencias (éxitos más fracasos).
### RAZÓN ÉXITO/FRACASO
####Es el cociente entre el número de veces que ocurre un evento y el número de veces en que no ocurre.
####INTERPRETACIÓN: Para interpretar la razón de ataque/no ataque de forma más intuitiva se debe multiplicar dicha razón Ψ (psi) por el número de decenas necesarias Ξ (Xi) para que la razón tenga un dígito d^*∈N a la izquierda del “punto decimal” (en este caso de aplicación hipotético Ξ=1000), resultando así un escalar real υ=Ψ*Ξ (donde υ es la letra griega ípsilon) con parte entera que se interpreta como “Por cada Ξ elementos de la población de referencia bajo la condición especificada (en este caso, que tomó aspirina o que tomó un placebo) estará presente la característica (u ocurrirá el evento, según sea el caso) en (d^*+h) ocasiones, en donde h es el infinitesimal a la derecha del punto decimal (llamado así porque separa no sólo los enteros de los infinitesimales, sino que a su derecha se encuentra la casilla correspondiente justamente a algún número decimal).
### RAZÓN DE MOMIOS
####DEFÍNICIÓN: Es una medida utilizada en estudios epidemiológicos transversales y de casos y controles, así como en los metaanálisis. En términos formales, se define como la posibilidad que una condición de salud o enfermedad se presente en un grupo de población frente al riesgo que ocurra en otro. En epidemiología, la comparación suele realizarse entre grupos humanos que presentan condiciones de vida similares, con la diferencia que uno se encuentra expuesto a un factor de riesgo (mi) mientras que el otro carece de esta característica (mo). Por lo tanto, la razón de momios o de posibilidades es una medida de tamaño de efecto.
####Nótese que es un concepto, evidentemente, de naturaleza frecuentista.
####La razón de momios es el cociente entre las razones de ocurrencia/no-ocurrencia de los tratamientos experimentales estudiados (una razón por cada uno de los dos tratamientos experimentales sujetos de comparación).
### TAMAÑO DEL EFECTO
####Defínase tamaño del efecto como cualquier medida realizada sobre algún conjunto de características (que puede ser de un elemento) relativas a cualquier fenómeno, que es utilizada para abordar una pregunta de interés, según (Kelly y Preacher 2012, 140). Tal y como ellos señalan, la definición es más que una combinación de “efecto” y “tamaño” porque depende explícitamente de la pregunta de investigación que se aborde. Ello significa que lo que separa a un tamaño de efecto de un estadístico de prueba (o estimador) es la orientación de su uso, si responde una pregunta de investigación en específico entonces el estadístico (o parámetro) se convierte en un “tamaño de efecto” y si sólo es parte de un proceso global de predicción entonces es un estadístico (o parámetro) a secas, i.e., su distinción o, expresado en otros términos, la identificación de cuándo un estadístico (o parámetro) se convierte en un tamaño de efecto, es una cuestión puramente epistemológica, no matemática. Lo anterior simplemente implica que, dependiendo del tipo de pregunta que se desee responder el investigador, un estadístico (o parámetro) será un tamaño de efecto o simplemente un estadístico (o parámetro) sin más.
setwd(“C:/Users/User/Desktop/Carpeta de Estudio/Maestría Profesional en Estadística/Semestre II-2021/Métodos, Regresión y Diseño de Experimentos/2/Laboratorios/Laboratorio 2”)
## ESTIMAR EL COEFICIENTE DE CORRELACIÓN DE PEARSON ENTRE TEMPERATURA Y PORCENTAJE DE CONVERSIÓN
###CÁLCULO MANUAL DE LA COVARIANZA
prom.temp = mean(temperatura)
prom.conversion = mean(porcentaje.conversion)
sd.temp = sd(temperatura)
sd.conversion = sd(porcentaje.conversion)
n = nrow(vinilacion)
covarianza = sum((temperatura-prom.temp)*(porcentaje.conversion-prom.conversion))/(n-1)
covarianza
###La covarianza es una medida para indicar el grado en el que dos variables aleatorias cambian en conjunto (véase https://www.mygreatlearning.com/blog/covariance-vs-correlation/#differencebetweencorrelationandcovariance).
###CÁLCULO DE LA COVARIANZA DE FORMA AUTOMATIZADA
cov(temperatura,porcentaje.conversion)
###CÁLCULO MANUAL DEL COEFICIENTE DE CORRELACIÓN DE PEARSON
###Véase https://www.wikiwand.com/en/Pearson_correlation_coefficient (9 de septiembre de 2021).
coef.correlacion = covarianza/(sd.temp*sd.conversion)
coef.correlacion
###CÁLCULO AUTOMATIZADO DEL COEFICIENTE DE CORRELACIÓN DE PEARSON
cor(temperatura,porcentaje.conversion) ###Salvo que se especifique lo contrario (como puede verificarse en la librería de R), el coeficiente de correlación calculado por defecto será el de Pearson, sin embargo, se puede calcular también el coeficiente de Kendall (escribiendo “kendall” en la casilla “method” de la sintaxis “cor”) o el de Spearman (escribiendo “spearman” en la casilla “method” de la sintaxis “cor”).
cor(presion,porcentaje.conversion)
###VÍNCULO, SIMILITUDES Y DIFERENCIAS ENTRE CORRELACIÓN Y COVARIANZA
###El coeficiente de correlación está íntimamente vinculado con la covarianza. La covarianza es una medida de correlación y el coeficiente de correlación es también una forma de medir la correlación (que difiere según sea de Pearson, Kendall o Spearman).
###La covarianza indica la dirección de la relación lineal entre variables, mientras que el coeficiente de correlación mide no sólo la dirección sino además la fuerza de esa relación lineal entre variables.
###La covarianza puede ir de menos infinito a más infinito, mientras que el coeficiente de correlación oscila entre -1 y 1.
###La covarianza se ve afectada por los cambios de escala: si todos los valores de una variable se multiplican por una constante y todos los valores de otra variable se multiplican por una constante similar o diferente, entonces se cambia la covarianza. La correlación no se ve influenciada por el cambio de escala.
###La covarianza asume las unidades del producto de las unidades de las dos variables. La correlación es adimensional, es decir, es una medida libre de unidades de la relación entre variables.
###La covarianza de dos variables dependientes mide cuánto en cantidad real (es decir, cm, kg, litros) en promedio covarían. La correlación de dos variables dependientes mide la proporción de cuánto varían en promedio estas variables entre sí.
###La covarianza es cero en el caso de variables independientes (si una variable se mueve y la otra no) porque entonces las variables no necesariamente se mueven juntas (por el supuesto de ortogonalidad entre los vectores, que expresa geométricamente su independencia lineal). Los movimientos independientes no contribuyen a la correlación total. Por tanto, las variables completamente independientes tienen una correlación cero.
## CREAR UNA MATRIZ DE CORRELACIONES DE PEARSON Y DE SPEARMAN
####La vinilación de los glucósidos se presenta cuando se les agrega acetileno a alta presión y alta temperatura, en presencia de una base para producir éteres de monovinil.
###Los productos de monovinil éter son útiles en varios procesos industriales de síntesis.
###Interesa determinar qué condiciones producen una conversión máxima de metil glucósidos para diversos isómeros de monovinil.
cor(vinilacion) ###Pearson
cor(vinilacion, method=”spearman”) ###Spearman
## CREAR UNA MATRIZ DE VARIANZAS Y COVARIANZAS (LOCALIZADAS ESTAS ÚLTIMAS EN LA DIAGONAL PRINCIPAL DE LA MATRIZ)
cov(vinilacion)
## GENERAR GRÁFICOS DE DISPERSIÓN
plot(temperatura,porcentaje.conversion)
plot(porcentaje.conversion~temperatura)
mod = lm(porcentaje.conversion~temperatura)
abline(mod,col=2)
###La sintaxis “lm” es usada para realizar ajuste de modelos lineales (es decir, ajustar un conjunto de datos a la curva dibujada por un modelo lineal -i.e., una línea recta-, lo cual -si es estadísticamente robusto- implica validar que el conjunto de datos en cuestión posee un patrón de comportamiento geométrico lineal).
###La sintaxis “lm” puede utilizar para el ajuste el método de los mínimos cuadrados ponderados o el método de mínimos cuadrados ordinarios, en función de si la opción “weights” se llena con un vector numérico o con “NULL”, respectivamente).
### La casilla “weights” de la sintaxis “lm” expresa las ponderaciones a utilizar para realizar el proceso de ajuste (si las ponderaciones son iguales para todas las observaciones, entonces el método de mínimos cuadrados ponderados se transforma en el método de mínimos cuadrados ordinarios). Estas ponderaciones son, en términos computacionales, aquellas que minimizan la suma ponderada de los errores al cuadrado.
###Las ponderaciones no nulas pueden user usadas para indicar diferentes varianzas (con los valores de las ponderaciones siendo inversamente proporcionales a la varianza); o, equivalentemente, cuando los elementos del vector de ponderaciones son enteros positivos w_i, en donde cada respuesta y_i es la media de las w_j unidades observacionales ponderadas (incluyendo el caso de que hay w_i observaciones iguales a y_i y los datos se han resumido).
###Sin embargo, en el último caso, observe que no se utiliza la variación dentro del grupo. Por lo tanto, la estimación sigma y los grados de libertad residuales pueden ser subóptimos; en el caso de pesos de replicación, incluso incorrecto. Por lo tanto, los errores estándar y las tablas de análisis de varianza deben tratarse con cuidado.
###La estimación sigma se refiere a la sintaxis “sigma” que estima la desviación estándar de los errores (véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/sigma.html).
###Si la variable de respuesta (o dependiente) es una matriz, un modelo lineal se ajusta por separado mediante mínimos cuadrados a cada columna de la matriz.
###Cabe mencionar que “formula” (la primera entrada de la sintaxis “lm”) tiene un término de intersección implícito (recuérdese que toda ecuación de regresión tiene un intercepto B_0, que puede ser nulo). Para eliminar dicho término, debe usarse y ~ x – 1 o y ~ 0 + x.
plot(presion~porcentaje.conversion)
mod = lm(presion~porcentaje.conversion) ###Ajuste a la recta antes mencionado y guardado bajo el nombre “mod”.
abline(mod,col=2) ###Es crear una línea color rojo (col=2) en la gráfica generada (con la función “mod”)
## REALIZAR PRUEBA DE HIPÓTESIS PARA EL COEFICIENTE DE CORRELACIÓN
###Véase https://opentextbc.ca/introstatopenstax/chapter/testing-the-significance-of-the-correlation-coefficient/, https://online.stat.psu.edu/stat501/lesson/1/1.9,
###Para estar casi seguros (en relación al concepto de convergencia) Para asegurar que existe al menos una leve correlación entre dos variables (X,Y) se tiene que probar que el coeficiente de correlación poblacional (r) no es nulo.
###Para que la prueba de hipótesis tenga validez se debe verificar que la distribución de Y para cada X es normal y que sus valores han sido seleccionados aleatoriamente.
###Si se rechaza la hipótesis nula, no se asegura que haya una correlación muy alta.
###Si el valor p es menor que el nivel de significancia se rechaza la Ho de que el coeficiente de correlación entre Y y X es cero en términos de determinado nivel de significancia estadística.
###Evaluar la significancia estadística de un coeficiente de correlación puede contribuir a validar o refutar una investigación donde este se haya utilizado (siempre que se cuenten con los datos empleados en la investigación), por ejemplo, en el uso de modelos lineales de predicción.
###Se puede utilizar la distribución t con n-2 grados de libertad para probar la hipótesis.
###Como se observará a continuación, además de la forma estándar, también es posible calcular t como la diferencia entre el coeficiente de correlación.
###Si la probabilidad asociada a la hipótesis nula es casi cero, puede afirmarse a un nivel de confianza determinado de que la correlación es altamente significativa en términos estadísticos.
###FORMA MANUAL
ee = sqrt((1-coef.correlacion^2)/(n-2))
t.calculado = (coef.correlacion-0)/ee ###Aquí parece implicarse que el valor t puede calcularse como el cociente entre el coeficiente de correlación muestral menos el coeficiente de correlación poblacional sobre el error estándar de la media.
2*(1-pt(t.calculado,n-2))
###FORMA AUTOMATIZADA
cor.test(temperatura,porcentaje.conversion) ###El valor del coeficiente de correlación que se ha estipulado (que es cero) debe encontrarse dentro del intervalo de confianza al nivel de probabilidad pertinente para aceptar Ho y, caso contrario, rechazarla.
cor.test(temperatura,presion)
###Como se señala en https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/, calcula el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (nótese aquí una definición frecuentista de probabilidad), incluyendo el umbral en cuestión.
qt(0.975,6)
### EJEMPLO DE APROXIMACIÓN COMPUTACIONAL DE LA DISTRIBUCIÓN t DE STUDENT A LA DISTRIBUCIÓN NORMAL
###El intervalo de confianza se calcula realizando la transformación-z de Fisher (tanto con la función automatizada de R como con la función personalizada elaborada) como a nivel teórico), la cual se utiliza porque cuando la transformación se aplica al coeficiente de correlación muestral, la distribución muestral de la variable resultante es aproximadamente normal, lo que implica que posee una varianza que es estable sobre diferentes valores de la correlación verdadera subyacente (puede ampliarse más en https://en.wikipedia.org/wiki/Fisher_transformation).
coef.correlacion+c(-1,1)*qt(0.975,6)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido como una distribución t de Student.
coef.correlacion+c(-1,1)*qnorm(0.975)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido normalmente.
## CASO DE APLICACIÓN HIPOTÉTICO
###En un estudio sobre el metabolismo de una especie salvaje, un biólogo obtuvo índices de actividad y datos sobre tasas metabólicas para 20 animales observados en cautiverio.
rm(list=ls()) ###Remover todos los objetos de la lista
actividad <- read.csv(“actividad.csv”, sep = “,”, dec=”.”, header = T)
attach(actividad)
n=nrow(actividad)
str(actividad)####”str” es para ver qué tipo de dato es cada variable.
plot(Indice.actividad,Tasa.metabolica)
###Coeficiente de Correlación de Pearson
cor(Indice.actividad,Tasa.metabolica, method=”pearson”)
###Se rechaza la hipótesis nula de que la correlación de Pearson es 0.
###Coeficiente de correlación de Spearman
(corr = cor(Indice.actividad,Tasa.metabolica, method=”spearman”))
(t.s=corr*(sqrt((n-2)/(1-(corr^2)))))
(gl=n-2)
(1-pt(t.s,gl))*2
###Se rechaza la hipótesis nula de que la correlación de Spearman es 0.
###NOTA ADICIONAL:
###Ambas oscilan entre -1 y 1. El signo negativo denota la relacion inversa entre ambas. La correlacion de Pearson mide la relación lineal entre dos variables (correlacion 0 es independencia lineal, que los vectores son ortogonales). La correlación de Pearson es para variables numérica de razón y tiene el supuesto de normalidad en la distribución de los valores de los datos. Cuando los supuestos son altamente violados, lo mejor es usar una medida de correlación no-paramétrica, específicamente el coeficiente de Spearman. Sobre el coeficiente de Spearman se puede decir lo mismo en relación a la asociación. Así, valores de 0 indican correlación 0, pero no asegura que por ser cero las variables sean independientes (no es concluyente).
### TABLAS DE CONTINGENCIA Y PRUEBA DE INDEPENDENCIA
###Una tabla de contingencia es un arreglo para representar simultáneamente las cantidades de individuos y sus porcentajes que se presentan en cada celda al cruzar dos variables categóricas.
###En algunos casos una de las variables puede funcionar como respuesta y la otra como factor, pero en otros casos sólo interesa la relación entre ambas sin intentar explicar la dirección de la relación.
###CASO DE APLICACIÓN HIPOTÉTICO
###Un estudio de ensayos clínicos trataba de probar si la ingesta regular de aspirina reduce la mortalidad por enfermedades cardiovasculares. Los participantes en el estudio tomaron una aspirina o un placebo cada dos días. El estudio se hizo de tal forma que nadie sabía qué pastilla estaba tomando. La respuesta es que si presenta o no ataque cardiaco (2 niveles),
rm(list=ls())
aspirina = read.csv(“aspirina.csv”, sep = “,”, dec=”.”, header = T)
aspirina
str(aspirina)
attach(aspirina)
names(aspirina)
str(aspirina)
View(aspirina)
#### 1. Determinar las diferencias entre la proporción a la que ocurrió un ataque dependiendo de la pastilla que consumió. Identifique el porcentaje global en que presentó ataque y el porcentaje global en que no presentó.
e=tapply(aspirina$freq,list(ataque,pastilla),sum) ###Genera la estructura de la tabla con la que se trabajará (la base de datos organizada según el diseño experimental previamente realizado).
prop.table(e,2) ###Riesgo Relativo columna. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.
prop.table(e,1) ###Riesgo Relativo fila. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.
(et=addmargins(e)) ###Tabla de contingencia.
addmargins(prop.table(e)) ####Distribución porcentual completa.
###Si se asume que el tipo de pastilla no influye en el hecho de tener un ataque cardíaco, entonces, debería de haber igual porcentaje de ataques en la columna de médicos que tomaron aspirina que en la de los que tomaron placebo.
###Se obtiene el valor esperado de ataques y no ataques.
### Lo anterior se realiza bajo el supuesto de que hay un 1.3% de ataques en general y un 98.7% de no ataques.
#### 2. Usando los valores observados y esperados, calcular el valor de Chi-Cuadrado para determinar si existe dependencia entre ataque y pastilla?
###Al aplicar la distribución Chi cuadrado, que es una distribución continua, para representar un fenómeno discreto, como el número de casos en cada unos de los supuestos de la tabla de 2*2, existe un ligero fallo en la aproximación a la realidad. En números grandes, esta desviación es muy escasa, y puede desecharse, pero cuando las cantidades esperadas en alguna de las celdas son números pequeños- en general se toma como límite el que tengan menos de cinco elementos- la desviación puede ser más importante. Para evitarlo, Yates propuso en 1934 una corrección de los métodos empleados para hallar el Chi cuadrado, que mejora la concordancia entre los resultados del cálculo y la distribución Chi cuadrado. En el articulo anterior, correspondiente a Chi cuadrado, el calculador expone, además de los resultados de Chi cuadrado, y las indicaciones para decidir, con arreglo a los límites de la distribución para cada uno de los errores alfa admitidos, el rechazar o no la hipótesis nula, una exposición de las frecuencias esperadas en cada una de las casillas de la tabla de contingencia, y la advertencia de que si alguna de ellas tiene un valor inferior a 5 debería emplearse la corrección de Yates. Fuente: https://www.samiuc.es/estadisticas-variables-binarias/valoracion-inicial-pruebas-diagnosticas/chi-cuadrado-correccion-yates/.
###Como se señala en [James E. Grizzle, Continuity Correction in the χ2-Test for 2 × 2 Tables, (The American Statistician, Oct., 1967, Vol. 21, No. 4 (Oct., 1967), pp. 28-32), p. 29-30], técnicamente hablando, la corrección de Yates hace que “(…) las probabilidades obtenidas bajo la distribución χ2 bajo la hipótesis nula converjan de forma más cercana con las probabilidades obtenidas bajo el supuesto de que el conjunto de datos fue generado por una muestra proveniente de la distribución hipergeométrica, i.e., generados bajo el supuesto que los dos márgenes de la tabla fueron fijados con antelación al muestreo.”
###Grizzle se refiere con “márgenes” a los totales de la tabla (véase https://www.tutorialspoint.com/how-to-create-a-contingency-table-with-sum-on-the-margins-from-an-r-data-frame). Además, la lógica de ello subyace en la misma definición matemática de la distribución hipergeométrica. Como se puede verificar en RStudio mediante la sintaxis “?rhyper”, la distribución hipergeométrica tiene la estructura matemática (distribución de probabilidad) p(x) = choose(m, x) choose(n, k-x)/choose(m+n, k), en donde m es el número de éxitos, n es el número de fracasos lo que ) y k es el tamaño de la muestra (tanto m, n y k son parámetros en función del conjunto de datos, evidentemente), con los primeros dos momentos definidos por E[X] = μ = k*p y la varianza se define como Var(X) = k p (1 – p) * (m+n-k)/(m+n-1). De lo anterior se deriva naturalmente que para realizar el análisis estocástico del fenómeno modelado con la distribución hipergeométrica es necesario conocer la cantidad de sujetos que representan los éxitos y los fracasos del experimento (en donde “éxito” y “fracaso” se define en función del planteamiento del experimento, lo cual a su vez obedece a múltiples factores) y ello implica que se debe conocer el total de los sujetos experimentales estudiados junto con su desglose en los términos binarios ya especificados.
###Lo mismo señalado por Grizzle se verifica (citando a Grizzle) en (Biometry, The Principles and Practice of Statistics in Biological Research, Robert E. Sokal & F. James Rohlf, Third Edition, p. 737), especificando que se vuelve innecesaria la corrección de Yates aún para muestras de 20 observaciones.
###Adicionalmente, merece mención el hecho que, como es sabido, la distribución binomial se utiliza con frecuencia para modelar el número de éxitos en una muestra de tamaño n extraída con reemplazo de una población de tamaño N. Sin embargo, si el muestreo se realiza sin reemplazo, las muestras extraídas no son independientes y, por lo tanto, la distribución resultante es una hipergeométrica; sin embargo, para N mucho más grande que n, la distribución binomial sigue siendo una buena aproximación y se usa ampliamente (véase https://www.wikiwand.com/en/Binomial_distribution).
###Grados de libertad correspondientes: número de filas menos 1 por número de columnas menos 1.
###Ho = Hay independencia entre el ataque y las pastillas.
(tabla.freq<-xtabs(freq~ataque+pastilla, data=aspirina))
###La tabla de frecuencias contiene tanto las frecuencias observadas como las esperadas.
###La frecuencia esperada es el conteo de observaciones que se espera en una celda, en promedio, si las variables son independientes.
###La frecuencia esperada de una variable se calcula como el producto entre el cociente [(Total de la Columna j)/(Total de Totales)]*(Total Fila i).
###PRUEBA CHI-CUADRADO AUTOMATIZADA
(prueba.chi<-chisq.test(tabla.freq,correct=F) ) ###La sintaxis “chisq.test” sirve para realizar la prueba de Chi-Cuadrado en tablas de contingencia y para realizar pruebas de bondad de ajuste.
names(prueba.chi)
###PRUEBA CHI-CUADRADO PASO A PASO
(esperado<-prueba.chi$expected) ###valores esperados
(observado<-prueba.chi$observed) ###valores observados
(cuadrados<-(esperado-observado)^2/esperado)
(chi<-sum(cuadrados))
1-pchisq(chi,1) ###Valor de p de la distribución Chi-Cuadrado (especificada mediante el conjunto de datos) calculado de forma no-automatizada.
###Si el valor p es mayor que el nivel de significancia se falla en rechazar Ho, si es menor se rechaza Ho.
###Se rechaza Ho con un nivel de significancia alfa de 0.05. Puesto que se tiene una probabilidad muy baja de cometer error tipo I, i.e., rechazar la hipótesis nula siendo falsa.
##ESTABLECER EL DIRECTORIO DE TRABAJO
setwd(“(…)”)
##LEER EL ARCHIVO DE DATOS. EN ESTE CASO, SUPÓNGASE QUE LOS DATOS SON DE UNA MUESTRA ALEATORIA DE 21 TIENDAS UBICADAS EN DIFERENTES PARTES DEL PAÍS Y A LAS CUALES SE LES REALIZÓ VARIOS ESTUDIOS. PARA ELLO SE MIDIERON ALGUNAS VARIABLES QUE SE PRESENTAN A CONTINUACIÓN
###- menor16= es un indicador de limpieza del lugar, a mayor número más limpio.
###- ipc= es un indice de producto reparado con defecto, indica el % de producto que se pudo reparar y posteriormente comercializar.
###- ventas= la cantidad de productos vendidos en el último mes.
read.table(“estudios.txt”)
## CREAR EL ARCHIVO Y AGREGAR NOMBRES A LAS COLUMNAS
estudios = read.table(“estudios.txt”, col.names=c(“menor16″,”ipc”,”ventas”))
names(estudios)
nrow(estudios)
ncol(estudios)
dim(estudios)
## REVISAR LA ESTRUCTURA DEL ARCHIVO Y CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR Y LOS CUANTILES PARA LAS VARIABLES DE ESTUDIO Y, ADICIONALMENTE, CONSTRÚYASE UN HISTOGRAMA DE FRECUENCIAS PARA LA VARIABLE “VENTAS”
str(estudios)
attach(estudios)
ventas
###Nota: la función “attach” sirve para adjuntar la base de datos a la ruta de búsqueda R. Esto significa que R busca en la base de datos al evaluar una variable, por lo que se puede acceder a los objetos de la base de datos simplemente dando sus nombres.
###Nota: Al poner el comando “attach”, la base de datos se adjunta a la dirección de búsqueda de R. Entonces ahora pueden llamarse las columnas de la base de datos por su nombre sin necesidad de hacer referencia a la base de datos ventas es una columna -i.e., una variable- de la tabla estudios). Así, al escribrlo, se imprime (i.e., se genera visualmente para la lectura ocular)
## CALCULAR LOS ESTADÍSTICOS POR VARIABLE Y EN CONJUNTO
mean(ventas)
sd(ventas)
var(ventas)
apply(estudios,2,mean)
apply(estudios,2,sd)
###Nota: la función “apply” sirve para aplicar otra función a las filas o columnas de una tabla de datos
###Nota: Si en “apply” se pone un “1” significa que aplicará la función indicada sobre las filas y si se pone un “2” sobre las columnas
## APLICAR LA FUNCIÓN “quantile”.
quantile(ventas) ###El cuantil de función genérica produce cuantiles de muestra correspondientes a las probabilidades dadas. La observación más pequeña corresponde a una probabilidad de 0 y la más grande a una probabilidad de 1.
apply(estudios,2,quantile)
###Nótese que para aplicar la función “apply” debe haberse primero “llamado” (i.e., escrito en una línea de código) antes la función que se aplicará (en este caso es la función “quantile”).
(qv = quantile(ventas,probs=c(0.025,0.975)))
###Aquí se está creando un vector de valores correspondientes a determinada probabilidad (las ventas, en este caso), que para este ejemplo son probabilidades de 0.025 y 0.975 de probabilidad, que expresan determinada proporción de la unidad de estudio que cumple con una determinada característica (que en este ejemplo esta proporción es el porcentaje de tiendas que tienen determinado nivel de ventas -donde la característica es el nivel de ventas-).
## GENERAR UN HISTOGRAMA DE FRECUENCIAS PARA LA COLUMNA “ventas”
hist(ventas)
abline(v=qv,col=2)
###Aquí se indica con “v” el conjunto de valores x para los cuales se graficará una línea. Como se remite a “qv” (que es un vector numérico de dos valores, 141 y 243) en el eje de las x, entonces graficará dos líneas color rojo (una en 141 y otra en 243).
###Aquí “col” es la sintaxis conocida como parte de los “parámetros gráficos” que sirve para especificar el color de las líneas
hist(ventas, breaks=7, col=”red”, xlab=”Ventas”, ylab=”Frecuencia”,
main=”Gráfico
Histograma de las ventas”)
detach(estudios)
###”breaks” es la indicación de cuántas particiones tendrá la gráfica (número de rectángulos, para este caso).
## GENERAR UNA DISTRIBUCIÓN N(35,4) CON NÚMEROS PSEUDOALEATORIOS PARA UN TAMAÑO DE MUESTRA n=1000
y = rnorm(1000,35,2)
hist(y)
qy = quantile(y,probs=c(0.025,0.975))
hist(y,freq=F)
abline(v=qy,col=2)
lines(density(y),col=2) #”lines” es una función genérica que toma coordenadas dadas de varias formas y une los puntos correspondientes con segmentos de línea.
## GENERAR UNA FUNCIÓN CON LAS VARIABLES n (CANTIDAD DE DATOS), m (MEDIA MUESTRAL) y s (DESVIACIÓN ESTÁNDAR MUESTRAL) QUE ESTIME Y GRAFIQUE, ADEMÁS DE LOS CÁLCULOS DEL INCISO ANTERIOR, LA MEDIA.
plot.m = function(n,m,s) {
y = rnorm(n,m,s)
qy = quantile(y,probs=c(0.025,0.975))
hist(y,freq=F)
abline(v=qy,col=2)
lines(density(y),col=2) ###Aquí se agrega una densidad teórica (una curva que dibuja una distribución de probabilidad -de masa o densidad- de referencia), la cual aparece en color rojo.
mean(y)
}
## OBTENER UNA MUESTRA DE TAMAÑO n=10 DE N(100, 15^2)
plot.m(10000,100,15)
###Nótese que formalmente la distribución normal se caracteriza siempre por su media y varianza, aunque en la sintaxis “rnorm” de R se introduzca su media y la raíz de su varianza (la desviación estándar muestral)
##Generar mil repeticiones e ingresarlas en un vector. Compárense sus medias y desviaciones estándar.
n=10000; m=100;s=15
I = 1000 ###”I” son las iteraciones
medias = numeric(I)
for(i in 1:I) {#”for” es un bucle (sintaxis usada usualmente para crear funciones personalizadas)
sam=rnorm(n,m,s) ###Aquí se crea una variable llamada “sam” (de “sample”, i.e., muestra) que contiene una la distribución normal creada con números pseudoaleatorios.
medias[i]=mean(sam) } ###”sam” se almacena en la i-ésima posición la i-ésima media generada con “rnorm” que le corresponde dentro del vector numérico de iteraciones (el que contiene las medias de cada iteración) medias[i] (que contiene los elementos generados con la función “mean(sam)”).
###Un bucle es una interrupción repetida del flujo regular de un programa; pueden concebirse como órbitas (en el contexto de los sistemas dinámicos) computacionales. Un programa está diseñado para ejecutar cada línea ordenadamente (una a una) de forma secuencial 1,2,3,…,n. En la línea m el programa entiende que tiene que ejecutar todo lo que esté entre la línea n y la línea m y repetirlo, en orden secuencial, una cantidad x de veces. Entonces el flujo del programa sería, para el caso de un flujo regular 1,2,3,(4,5,…,m),(4,5,…,m),…*x,m+1,m+2,…,n.
## UTILIZAR LA VARIABLE “medias[i]” GENERADA EN EL INCISO ANTERIOR PARA DETERMINAR LA DESVIACIÓN ESTÁNDAR DE ESE CONJUNTO DE MEDIAS (ALMACENADO EN “medias[i]”) Y DETERMINAR SU EQUIVALENCIA CON EL ERROR ESTÁNDAR DE LA MEDIA (e.e.)
###Lo anterior evidentemente implica que se está construyendo sintéticamente (a través de bucles computacionales) lo que, por ejemplo, en un laboratorio botánico se registra a nivel de datos (como en el que Karl Pearson y Student hacían sus experimentos y los registraban estadísticamente) y luego se analiza en términos de los métodos de la estadística descriptiva e inferencial (puesto que a esos dominios pertenece el e.e.).
sd(medias) ### desviación de la distribución de las medias
(ee = s/sqrt(n) )### equivalencia teórica
## COMPARAR LA DISTRIBUCIÓN DE MEDIAS
m
mean(medias)
## GRAFICAR LA DISTRIBUCIÓN DE MEDIAS GENERADA EN EL INCISO ANTERIOR
hist(medias)
qm = quantile(medias,probs=c(0.025,0.975))
hist(medias,freq=F)
abline(v=qm,col=2)
lines(density(medias),col=2)
## GENERAR UN INTERVALO DE CONFIANZA CON UN NIVEL DE 0.95 PARA LA MEDIA DE LAS VARIABLES SUJETAS A ESTUDIO
attach(estudios)
### Percentil 0.975 de la distribución t-student para 95% de área bajo la curva
n = length(ventas) ###Cardinalidad o módulo del conjunto de datos
t = qt(0.975,n-1) ###valor t de la distribución t de student correspondiente a un nivel de probabilidad y n-1 gl
###Se denominan pruebas t porque todos los resultados de la prueba se basan en valores t. Los valores T son un ejemplo de lo que los estadísticos llaman estadísticas de prueba. Una estadística de prueba es un valor estandarizado que se calcula a partir de datos de muestra durante una prueba de hipótesis. El procedimiento que calcula la estadística de prueba compara sus datos con lo que se espera bajo la hipótesis nula (fuente: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-t-values-and-t-distributions).
###”qt” es la sintaxis que especifica un valor t determinado de la variable aleatoria de manera que la probabilidad de que esta variable sea menor o igual a este determinado valor t es igual a la probabilidad dada (que en la sintaxis de R se designa como p)
###Para más información véase https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/
###”n-1″ son los grados de libertad de la distribución t de student.
#### Error Estándar
ee = sd(ventas)/sqrt(n)
### Intervalo
mean(ventas)-t*ee
mean(ventas)+t*ee
mean(ventas)+c(-1,1)*t*ee ###c(-1,1) es un vector que se introduce artificialmente para poder construir el intervalo de confianza al 95% (u a otro nivel de confianza deseado) en una sola línea de código.
## ELABORAR UNA FUNCIÓN QUE PERMITA CONSTRUIR UN INTERVALO DE CONFIANZA AL P% DE NIVEL DE CONFIANZA PARA LA VARIABLE X
ic = function(x,p) {
n = length(x)
t = qt(p+((1-p)/2),n-1)
ee = sd(x)/sqrt(n)
mean(x)+c(-1,1)*t*ee
}
###Intervalo de 95% confianza para ventas
ic(ventas,0.95)
ic(ventas,0.99)
###El nivel de confianza hace que el intervalo de confianza sea más grande pues esto implica que los estadísticos de prueba (las versiones muestrales de los parámetros poblacionales) son más estadísticamente más robustos, por lo que su vecindario de aplicación es más amplio.
ic(ipc,0.95)
ic(menor16,0.95)
## REALIZAR LA PRUEBA DE HIPÓTESIS (PARA UNA MUESTRA) DENTRO DEL INTERVALO DE CONFIANZA GENERADO AL P% DE NIVEL DE CONFIANZA
t.test(ventas,mu=180) ###Por defecto, salvo que se cambie tal configuración, R realiza esta prueba a un nivel de confianza de 0.95.
### Realizando manualmente el cálculo anterior:
(t2=(mean(ventas)-180)/ee) ###Aquí se calcula el valor t por separado (puesto que la sintaxis “t.test” lo estima por defecto, como puede verificarse en la consola tras correr el código). Se denota con “t2” porque anteriormente se había definido en la línea de código 106 t = qt(0.975,n-1) para la construcción manual de los intervalos de confianza.
2*(1-pt(t2,20)) ###Aquí se calcula manualmente el valor p. Se multiplica por dos para tener la probabilidad acumulada total (considerando ambas colas) al valor t (t2, siendo más precisos) definido, pues esta es la definición de valor p. Esto se justifica por el hecho de la simetría geométrica de la distribución normal, la cual hace que la probabilidad acumulada (dentro de un intervalo de igual longitud) a un lado de la media sea igual a la acumulada (bajo la condición especificada antes) a la derecha de la media.
2*(pt(-t2,20)) ###Si el signo resultante de t fuese negativo. Además, 20 es debido a n-1 = 21-1 = 20.
###La sintaxis “pt” calcula el valor de la función de densidad acumulada (cdf) de la distribución t de Student dada una determinada variable aleatoria x y grados de libertad df (degrees of freedom, equivalente a gl en español), véase https://www.statology.org/working-with-the-student-t-distribution-in-r-dt-qt-pt-rt/
## CREAR UNA VARIABLE QUE PERMITA SEPARAR ESPACIALMENTE (AL INTERIOR DE LA GRÁFICA QUE LOS REPRESENTA) AQUELLOS ipc MENORES A UN VALOR h (h=117) DE AQUELLOS QUE SON IGUALES O MAYORES QUE h (h=117)
(ipc1 = 1*(ipc<17)+2*(ipc>=17))
ipc2=factor(ipc1,levels=c(1,2),labels=c(“uno”,”dos”))
plot(ipc2,ipc)
abline(h=17,col=2)
## GENERAR GRÁFICO DE DIAMENTE CON LOS INTERVALOS DE CONFIANZA AL 0.95 DE NdC CENTRADOS EN LAS MEDIAS DE CADA GRUPO CREADO ALREDEDOR DE 17 Y UN BOX-PLOT
library(gplots)
plotmeans(ventas~ipc2) ###Intervalos del 95% alrededor de la media (GRÁFICO DE DIMANTES)
boxplot(ventas~ipc2)
## REALIZAR LA PRUEBA DE HIPÓTESIS DE QUE LA MEDIA ES LA MISMA PARA LOS DOS GRUPOS GENERADOS ALREDEDOR DE h=17
(med = tapply(ventas,ipc1,mean))
(dev = tapply(ventas,ipc1,sd))
(var = tapply(ventas,ipc1,var))
(n = table(ipc1))
dif=med[1]-med[2]
###La sintaxis “tapply” aplica una función a cada celda de una matriz irregular (una matriz es irregular si la cantidad de elementos de cada fila varía), es decir, a cada grupo (no vacío) de valores dados por una combinación única de los niveles de ciertos factores.
### PRUEBA DE HIPÓTESIS EN ESCENARIO 1: ASUMIENDO VARIANZAS IGUALES (SUPUESTO QUE EN ESCENARIOS REALES DEBERÁ VERIFICARSE CON ANTELACIÓN)
varpond= ((n[1]-1)*var[1] + (n[2]-1)*var[2])/(n[1]+n[2]-2) ###Aquí se usa una varianza muestral ponderada como medida más precisa (dado que el tamaño de los grupos difiere) de una varianza muestral común entre los dos grupos construidos alrededor de h=17
e.e=sqrt((varpond/n[1])+(varpond/n[2]))
dif/e.e
t.test(ventas~ipc1,var.equal=T)
t.test(ventas~ipc1) #Por defecto la sintaxis “t.test” considera las varianzas iguales, por lo que en un escenario de diferentes varianzas deberá ajustarse esto como se muestra a continuación.
### PRUEBA DE HIPÓTESIS EN ESCENARIO 2: ASUMIENDO VARIANZAS DESIGUALES (AL IGUAL QUE ANTES, ESTO DEBE VERIFICARSE)
e.e2=sqrt((var[1]/n[1])+(var[2]/n[2]))
dif/e.e2
a=((var[1]/n[1]) + (var[2]/n[2]))^2
b=(((var[1]/n[1])^2)/(n[1]-1)) +(((var[2]/n[2])^2)/(n[2]-1))
(glmod=a/b)
t.test(ventas~ipc1,var.equal=F)
###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al cero (porque la Ho afirma que la verdadera diferencia en las medias -i.e., su significancia estadística- es nula).
###Conceptualmente hablando, una diferencia estadísticamente significativa expresa una variación significativa en el patrón geométrico que describe al conjunto de datos. Véase https://marxianstatistics.com/2021/08/27/modelos-lineales-generalizados/. Lo que define si una determinada variación es significativa o no está condicionado por el contexto en que se realiza la investigación y la naturaleza misma del fenómeno estudiado.
## REALIZAR PRUEBA F PARA COMPARAR LA VARIANZA DE LOS GRUPOS Y LA PROBABILIDAD ASOCIADA
(razon.2 = var[1]/var[2]) ###Ratio de varianzas (asumiendo que las varianzas poblacionales son equivalentes a la unidad, en otro caso su estimación sería matemáticamente diferente; véase https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_power/bs704_power_print.html y https://stattrek.com/online-calculator/f-distribution.aspx).
pf(razon.2,n[1]-1,n[2]-1) ###Al igual que “pt” (para el caso de la t de Student que compara medias de dos grupos o muestras), “pf” en el contexto de la prueba F (que compara la varianza de dos grupos o muestras) calcula la probabilidad acumulada que existe hasta determinado valor.
###La forma general mínima (más sintética) de la sintaxis “pf” es “pf(x, df1, df2)”, en donde “x” es el vector numérico (en este caso, de un elemento), df1 son los gl del numerador y df2 son los grados de libertad del denominador de la distribución F (cuya forma matemática puede verificarse en la documentación de R; véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html).
(2*pf(razon.2,n[1]-1,n[2]-1)) ###Aquí se calcula el valor p manualmente.
###Realizando de forma automatizada el procedimiento anterior:
var.test(ventas~ipc1)
detach(estudios)
###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al 1 porque la Ho afirma que la varianza de ambas muestras es igual (lo que implica que su cociente o razón debe ser 1), lo que equivale a afirmar que la diferencia real entre desviaciones (la significancia estadística de esta diferencia) es nula.
## EN EL ESCENARIO DEL ANÁLISIS DE MUESTRAS PAREADAS, ANALIZAR LOS DATOS SOBRE EL EFECTO DE DOS DROGAS EN LAS HORAS DE SUEÑO DE UN GRUPO DE PACIENTES (CONTENIDOS EN EL ARCHIVO “sleep” DE R)
attach(sleep) ###”sleep” es un archivo de datos nativo de R, por ello puede “llamarse” sin especificaciones de algún tipo.
plot(extra ~ group)
plotmeans(extra ~ group,connect=F) ###Intervalos del 95% alrededor de la media. El primer insumo (entrada) de la aplicación “plotmeans” es cualquier expresión simbólica que especifique la variable dependiente o de respuesta (continuo) y la variable independiente o de agrupación (factor). En el contexto de una función lineal, como la función “lm()” que es empleada por “plotmeans” para graficar (véase la documentación de R sobre “plotmeans”), sirve para separar la variable dependiente de la o las variables independientes, las cuales en este caso de aplicación son los factores o variables de agrupación (puesto que se está en el contexto de casos clínicos y, en este contexto, las variables independientes son las variables que sirven de criterio para determinar la forma de agrupación interna del conjunto de datos; este conjunto de datos contiene las observaciones relativas al efecto de dos drogas diferentes sobre las horas de sueño del conjunto de pacientes-).
A = sleep[sleep$group == 1,] ###El símbolo “$” sirve para acceder a una variable (columna) de la matriz de datos, en este caso la número 1 (por ello el “1”).
B = sleep[sleep$group == 2,]
plot(1:10,A$extra,type=”l”,col=”red”,ylim=c(-2,7),main=”Gráfico 1
Horas de sueño entre pacientes con el tratamiento A y B”,ylab=”Horas”,xlab=”Numero de paciente”,cex.main=0.8)
lines(B$extra,col=”blue”)
legend(1,6,legend=c(“A”,”B”),col=c(“red”,”blue”),lwd=1,box.col=”black”,cex=1)
t.test(A$extra,B$extra)
t.test(A$extra,B$extra,paired=T)
t.test(A$extra-B$extra,mu=0)
###Una variable de agrupación (también llamada variable de codificación, variable de grupo o simplemente variable) clasifica las observaciones dentro de los archivos de datos en categorías o grupos. Le dice al sistema informático (sea cual fuere) cómo el usuario ha clasificado los datos en grupos. Las variables de agrupación pueden ser categóricas, binarias o numéricas.
###Cuando se desea realizar un comando dentro del texto (en un contexto de formato Rmd) se utiliza así,por ejemplo se podría decir que la media del sueño extra es `r mean(sleep$extra)` y la cantidad de datos son `r length(sleep$extra)`
## ESTIMACIÓN DE LA POTENCIA DE UNA PRUEBA DE HIPÓTESIS (PROBABILIDAD BETA DE COMETER ERROR TIPO II)
library(pwr) ###”pwr” es una base de datos nativa de R
delta=3 ###Nivel de Resolución de la prueba. Para un valor beta (probabilidad de cometer error tipo II) establecido el nivel de resolución es la distancia mínima que se desea que la prueba sea capaz de detectar, es decir, que si existe una distancia entre los promedios tal que la prueba muy probablemente rechace la hipótesis nula Ho. Para el cálculo manual de la probabilidad beta véase el complemento de este documento (FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE I, TEORÍA ESTADÍSTICA)
s=10.2 ###Desviación estándar muestral
(d=delta/s) #Tamano del efecto.
pwr.t.test(n=NULL,d=d,power =0.9,type=”one.sample”)
## ESTIMAR CON EL VALOR ÓPTIMO PARA EL NIVEL DE RESOLUCIÓN, PARTIENDO DE n=40 Y MANTENIENDO LA POTENCIA DE 0.9
(potencia=pwr.t.test(n=40,d=NULL,power =0.9,type=”one.sample”))
potencia$d*s #Delta
## GRAFICAR LAS DIFERENTES COMBINACIONES DE TAMAÑO DE MUESTRA Y NIVEL DE RESOLUCIÓN PARA UNA POTENCIA DE LA PRUEBA FIJA
s=10.2
deltas=seq(2,6,length=30)
n=numeric(30)
for(i in 1:30) {
(d[i]=deltas[i]/s)
w=pwr.t.test(n=NULL,d=d[i],power =0.9,type=”one.sample”)
n[i]=w$n
}
plot(deltas,n,type=”l”)
## SUPÓNGASE QUE SE QUIERE PROBAR SI DOS GRUPOS PRESENTAN DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN LOS NIVELES PROMEDIO DE AMILASA, PARA LO CUAL SE CONSIDERA IMPORTANTE DETECTAR DIFERENCIAS DE 15 UNIDADES/ML O MÁS ENTRE LOS PROMEDIOS
s2p=290.9 ###Varianza ponderada de los dos grupos
(sp=sqrt(s2p)) ###Desviación estándar ponderada de los dos grupos
delta=15
(d=delta/sp)
pwr.t.test(n=NULL,d=d,power =0.9,type=”two.sample”)