SOBRE LA INICIATIVA INTERNACIONAL DE PROMOCIÓN DE POLÍTICA ECONÓMICA (IIPE 2021), EL IMPERIALISMO, CHINA Y LAS FINANZAS INTERNACIONALES

BREVE INTRODUCCIÓN

Este día se publicó una investigación en el sitio web de Michael Roberts que versa, en general, sobre el papel del desarrollo tecnológico en el comercio internacional como mecanismo de acumulación de capital característico de la economía capitalista planetaria en su fase imperialista. Sobre dicha investigación se elabora la presente publicación, la cual está compuesta por tres secciones. En la primera sección se realiza un breve abordaje histórico sobre aspectos teóricos de interés abordados por Roberts en su publicación de naturaleza fundamentalmente empírica. En la segunda sección se presenta la traducción de la publicación de Roberts. Finalmente, en la tercera sección se facilita la descarga de las referencias bibliográficas presentadas por Roberts en su publicación.

I. ASPECTOS TEÓRICOS preliminares

Es importante decir que la teoría sobre el capitalismo en su fase imperialista hunde sus raíces empíricas más importantes el trabajo de Vladimir Lenin (1916) y sus raíces teóricas más importantes en el trabajo de Arghiri Emmanuel (1962). Por supuesto, el trabajo de Lenin no se limitó a ser empírico, pero fue en esta dirección la centralización de sus esfuerzos y ello conforma un punto de partida razonable para un breve análisis sobre cómo (y por qué) han evolucionado las teorías marxistas sobre el imperialismo.

Lenin fue el primer teórico del marxismo que estudió la acumulación de capital a escala planetaria considerando las relaciones centro-perisferia como una generalización económica, política, social y cultural de la lucha de clases nacional; sobre ello no existe debate relevante en el seno de la comunidad marxista. La armonía no es tal cuando se trata de abordar la obra de Arghiri Emmanuel. Cualquier persona lo suficientemente estudiosa de la historia de las ciencias sabrá que, sobre todo en ciencias sociales (con especial énfasis en economía política), la aceptación de una teoría no tiene que ver con motivos puramente académicos sino también políticos. La teoría de economía política internacional (de ahora en adelante economía geopolítica) de Emmanuel tuvo poca aceptación entre la comunidad marxista fundamentalmente no por su polémico uso de la ley del valor en el concierto internacional, sino por las conclusiones políticas que su teoría generaba. La idea central de Emmanuel es que en el concierto interncional ocurre una transformación global de valores a precios de producción como la que ocurre (salvo las particularidades naturales características del incremento en complejidad del sistema) a escala local o nacional. Es esa y no otra la idea fundamental del trabajo de Emmanuel, con independencia del grado de acuerdo (o desacuerdo) que se tenga sobre la forma en que realiza tal planteamiento. La lógica que condujo a Emmanuel a la construcción de esta idea, que no es más que una aplicación global de la lógica local de la transformación de valores en precios de producción ya dada por Marx, parecería ser la misma que la que condujo a construir, por ejemplo, la teoría de la selección natural o la teoría matemática del caos el concepto de autosimilaridad. Esta esta lógica se puede generalizar como se plantea a continuación.

Los componentes (modelados mediante ecuaciones) de una totalidad (modelada mediante un sistema de ecuaciones) comparten una esencia común (i.e., que son isomórficos entre sí) que permite su combinación integrodiferencial de forma armónica y coherente bajo una determinada estructura interna de naturaleza material (objetiva), no-lineal (la totalidad es diferente a la suma de sus partes) y dinámica (el tiempo transcurre) generada por la interacción de tales componentes dadas determinadas condiciones iniciales. La estructura interna del sistema (o totalidad de referencia) condiciona a los componentes que la generan bajo el mismo conjunto de leyes (pero generalizado, por lo que no es formalmente el mismo) que rigen la interacción entre las condiciones iniciales y las relaciones primigenias entre componentes que determinaron la gestación de dicha estructura interna. Estas leyes son: 1. Unidad y Lucha de los Contrarios (que implica emergencia y al menos autoorganización crítica), 2. Salto de lo Cuantitativo a lo Cualitativo (bifurcación), 3. Ley de la Negación de la Negación (que es una forma generalizada de la síntesis química).

SOBRE DIALÉCTICA Y COMPLEJIDAD

Antes de proceder a exponer las fuentes formales y fácticas de la poca popularidad de las teorías de Emmanuel, es necesario decir un par de cuestiones relativas al papel que desempeña el tiempo en el sistema marxiano. Las escuelas de pensamiento económico marxista se pueden clasificar según su abordaje matemático del proceso histórico de transformación de valores en precios de producción; sin embargo, aún dentro de las mismas escuelas existen divergencias teóricas importantes, fundamentalmente en relación a la MELT (Monetary Expression of Labor Time) o algún equivalente de esta. Así, las escuelas de pensamiento económico marxista son la escuela temporalista, la escuela simultaneísta y alguna combinación o punto intermedio entre ellas. Todas estas diferencias filosóficas, en contraste con lo que ocurre en Filosofía de la Estadística entre, por ejemplo, frecuentistas y bayesianos subjetivos, no solo no requieren de mucha investigación para ser verificadas empíricamente, sino que además tienen como consecuencia la gestación de sistemas matemáticos que hasta la fecha (la realidad es cambiante, indudablemente) han resultado antagónicos teóricamente respecto de ese punto (en el de transformar valores en precios de producción) y numéricamente diferentes de forma sustancial en sus predicciones (aunque cualitativamente es usual que sus diferencias no sean esenciales, salvo en el punto expuesto -que es evidentemente un aspecto medular de la teoría de Marx-).

La polémica sobre el uso de la ley del valor de Emmanuel tuvo que ver con el manejo de los supuestos que realizó y, con ello, con los escenarios teóricos que identificaba con la realidad. Esta polémica se agudizó luego de que, tras las críticas recibidas (cuyo trasfondo era teórico solo formalmente o minoritariamente en su defecto), Emmanuel publicara un sistema de ecuaciones simultáneas (con ello se ganó el rechazo de los marxistas más conservadores de la época -los cuales eran reacios al uso de las matemáticas-, que no eran minoría) para abordar la transformación de valores en precios de producción) poco ortodoxo para el oficialismo de lo que se podría denominar como “marxismo matemático”, lo que en términos netos le valió para la época (1962) incompatibilidad intelectual con la generalidad de los académicos.

El debate teórico real no es, evidentemente, si el tiempo existe o no, sino si es lo suficientemente relevante para configurar el sistema matemático alrededor del mismo o si no lo es y, por consiguiente, no existen consecuencias relevantes (tanto teóricas como numéricas) por descartarlo del modelo formal del sistema capitalista. Emmanuel define en su obra el valor como cantidad cronométrica de trabajo socialmente necesario (que es la misma definición del marxismo clásico, sólo que comprimida), sin embargo, su modelo de transformación de valores en precios de producción hace uso de las ecuaciones simultáneas (lo heterodoxo del asunto radica en que establece ex ante al trabajo como la variable fundamental del sistema, para que las ecuaciones y las incógnitas se igualen automáticamente y afirmar con ello que se implica la anterioridad histórica de la fuerza de trabajo, puesto que lo precede teóricamente), aunque tampoco por ello tenga problema en afirmar que existen “dos esencias” (el capital y el trabajo) o, en otros términos, que no sólo el trabajo crea valor. ¿Cuál fue entonces el trasfondo político?

A pesar de que en tiempos modernos pueda resultar un poco difícil de pensar, alrededor de 1962 existía un relativamente pujante movimiento obrero internacional y políticamente su unidad era cardinal en la lucha contra la explotación planeataria y el modelo de Emmanuel, guste o no, implica que el bienestar de los trabajadores de los países industrializados es sufragado indirectamente por las condiciones de miseria extrema que se viven en los países de la periferia. Por supuesto, ello se implica también a nivel local, ¿quiénes permiten que los trabajadores de las ramas productivas más intensivas en capital obtengan salarios muy por encima del promedio salarial nacional sino los trabajadores de las ramas productivas intensivas en trabajo?, en un sistema de economía política los agentes económicos guardan entre sí relaciones de suma cero, es decir, la ganancia de unos implica la pérdida de otros, aunque esto no siempre ocurre (y mucho menos se observa) de forma inmediata; este hecho fundamental no cambia en un sistema de economía geopolítica. Sin embargo, aunque la topología en ambos sistemas es fundamentalmente la misma las métricas cambian y las grandes brechas sociales observadas internacionalmente (por ejemplo, entre Noruega y Haití) no se observan en términos generales (promedio) a nivel local, lo que hace más notoria la explotación, aunque no más real. Complementariamente, debe resaltarse el hecho de que, dentro de sus propias condiciones materiales de existencia, los trabajadores de los países industrializados tienen sus propias luchas sociales.

Mi máximo cariño, aprecio y admiración a toda la comunidad marxista de aquella época, puesto que al fin y al cabo lucha de clases fáctica es nuestra misión última y todos somos producto de nuestras condiciones históricas, es decir, aunque hacemos la historia, no hacemos las condiciones bajo las cuales hacemos nuestra historia.

II. IIPPE 2021: imperialism, China and finance – michael roberts

La conferencia 2021 de la Iniciativa Internacional para la Promoción de la Economía Política (IIPPE) tuvo lugar hace un par de semanas, pero solo ahora he tenido tiempo de revisar los numerosos trabajos presentados sobre una variedad de temas relacionados con la economía política. El IIPPE se ha convertido en el canal principal para que economistas marxistas y heterodoxos ‘presenten sus teorías y estudios en presentaciones. Las conferencias de materialismo histórico (HM) también hacen esto, pero los eventos de HM cubren una gama mucho más amplia de temas para los marxistas. Las sesiones de Union for Radical Political Economy en la conferencia anual de la American Economics Association se concentran en las contribuciones marxistas y heterodoxas de la economía, pero IIPPE involucra a muchos más economistas radicales de todo el mundo.

Ese fue especialmente el caso de este año porque la conferencia fue virtual en zoom y no física (¿tal vez el próximo año?). Pero todavía había muchos documentos sobre una variedad de temas guiados por varios grupos de trabajo del IIPPE. Los temas incluyeron teoría monetaria, imperialismo, China, reproducción social, financiarización, trabajo, planificación bajo el socialismo, etc. Obviamente no es posible cubrir todas las sesiones o temas; así que en esta publicación solo me referiré a las que asistí o en las que participé.

El primer tema para mí fue la naturaleza del imperialismo moderno con sesiones que fueron organizadas por el grupo de trabajo de Economía Mundial. Presenté un artículo, titulado La economía del imperialismo moderno, escrito conjuntamente por Guglielmo Carchedi y yo. En la presentación argumentamos, con evidencia, que los países imperialistas pueden definirse económicamente como aquellos que sistemáticamente obtienen ganancias netas, intereses y rentas (plusvalía) del resto del mundo a través del comercio y la inversión. Estos países son pequeños en número y población (solo 13 o más califican según nuestra definición).

Demostramos en nuestra presentación que este bloque imperialista (IC en el gráfico a continuación) obtiene algo así como 1,5% del PIB cada año del ‘intercambio desigual’ en el comercio con los países dominados (DC en el gráfico) y otro 1,5% del PIB de intereses, repatriación de utilidades y rentas de sus inversiones de capital en el exterior. Como estas economías están creciendo actualmente a no más del 2-3% anual, esta transferencia es un apoyo considerable al capital en las economías imperialistas.

https://thenextrecession.files.wordpress.com/2021/09/ii1.png

Los países imperialistas son los mismos “sospechosos habituales” que Lenin identificó en su famosa obra hace unos 100 años. Ninguna de las llamadas grandes “economías emergentes” está obteniendo ganancias netas en el comercio o las inversiones – de hecho, son perdedores netos para el bloque imperialista – y eso incluye a China. De hecho, el bloque imperialista extrae más plusvalía de China que de muchas otras economías periféricas. La razón es que China es una gran nación comercial; y también tecnológicamente atrasado en comparación con el bloque imperialista. Entonces, dados los precios del mercado internacional, pierde parte de la plusvalía creada por sus trabajadores a través del comercio hacia las economías más avanzadas. Esta es la explicación marxista clásica del “intercambio desigual” (UE).

Pero en esta sesión, esta explicación de los logros imperialistas fue discutida. John Smith ha producido algunos relatos convincentes y devastadores de la explotación del Sur Global por parte del bloque imperialista. En su opinión, la explotación imperialista no se debe a un “intercambio desigual” en los mercados entre las economías tecnológicamente avanzadas (imperialismo) y las menos avanzadas (la periferia), sino a la “superexplotación”. Los salarios de los trabajadores del Sur Global han bajado incluso de los niveles básicos de reproducción y esto permite a las empresas imperialistas extraer enormes niveles de plusvalía a través de la “cadena de valor” del comercio y los márgenes intraempresariales a nivel mundial. Smith argumentó en esta sesión que tratar de medir las transferencias de plusvalía del comercio utilizando estadísticas oficiales como el PIB de cada país era una ‘economía vulgar’ que Marx habría rechazado porque el PIB es una medida distorsionada que deja fuera una parte importante de la explotación de la economía global. Sur.

Nuestra opinión es que, incluso si el PIB no captura toda la explotación del Sur Global, nuestra medida de intercambio desigual todavía muestra una enorme transferencia de valor de las economías periféricas dependientes al núcleo imperialista. Además, nuestros datos y medidas no niegan que gran parte de esta extracción de plusvalía proviene de una mayor explotación y salarios más bajos en el Sur Global. Pero decimos que esta es una reacción de los capitalistas del Sur a su incapacidad para competir con el Norte tecnológicamente superior. Y recuerde que son principalmente los capitalistas del Sur los que están haciendo la “súper explotación”, no los capitalistas del Norte. Estos últimos obtienen una parte a través del comercio de cualquier plusvalía extra de las mayores tasas de explotación en el Sur.

De hecho, mostramos en nuestro artículo, las contribuciones relativas a la transferencia de plusvalía de tecnología superior (mayor composición orgánica del capital) y de explotación (tasa de plusvalía) en nuestras medidas. La contribución de la tecnología superior sigue siendo la principal fuente de intercambio desigual, pero la participación de diferentes tasas de plusvalía se ha elevado a casi la mitad.

https://thenextrecession.files.wordpress.com/2021/09/ii2.png

Andy Higginbottom en su presentación también rechazó la teoría marxista clásica del imperialismo del intercambio desigual presentada en el artículo Carchedi-Roberts, pero por diferentes motivos. Consideró que la igualación de las tasas de ganancia a través de las transferencias de plusvalías individuales a precios de producción se realizó de manera inadecuada en nuestro método (que seguía a Marx). Por lo tanto, nuestro método podría no ser correcto o incluso útil para empezar.

En resumen, nuestra evidencia muestra que el imperialismo es una característica inherente del capitalismo moderno. El sistema internacional del capitalismo refleja su sistema nacional (un sistema de explotación): explotación de las economías menos desarrolladas por las más desarrolladas. Los países imperialistas del siglo XX no han cambiado. No hay nuevas economías imperialistas. China no es imperialista en nuestras medidas. La transferencia de plusvalía por parte de la UE en el comercio internacional se debe principalmente a la superioridad tecnológica de las empresas del núcleo imperialista pero también a una mayor tasa de explotación en el “sur global”. La transferencia de plusvalía del bloque dominado al núcleo imperialista está aumentando en términos de dólares y como porcentaje del PIB.

En nuestra presentación, revisamos otros métodos para medir el “intercambio desigual” en lugar de nuestro método de “precios de producción”, y hay bastantes. En la conferencia, hubo otra sesión en la que Andrea Ricci actualizó (ver sección III) su invaluable trabajo sobre la medición de la transferencia de plusvalía entre la periferia y el bloque imperialista utilizando tablas mundiales de insumo-producto para los sectores comerciales y medidas en dólares PPA. Roberto Veneziani y sus colegas también presentaron un modelo de equilibrio general convencional para desarrollar un “índice de explotación” que muestra la transferencia neta de valor en el comercio de los países. Ambos estudios apoyaron los resultados de nuestro método más “temporal”.

En el estudio de Ricci hay una transferencia neta anual del 4% de la plusvalía en el PIB per cápita a América del Norte; casi el 15% per cápita para Europa occidental y cerca del 6% para Japón y Asia oriental. Por otro lado, existe una pérdida neta de PIB anual per cápita para Rusia del 17%; China 10%, América Latina 5-10% y 23% para India.

https://thenextrecession.files.wordpress.com/2021/09/ii3.png

En el estudio de Veneziani et al, “todos los países de la OCDE están en el centro, con un índice de intensidad de explotación muy por debajo de 1 (es decir, menos explotado que explotador); mientras que casi todos los países africanos son explotados, incluidos los veinte más explotados “. El estudio coloca a China en la cúspide entre explotados y explotados.

https://thenextrecession.files.wordpress.com/2021/09/ii4.png

En todas estas medidas de explotación imperialista, China no encaja a la perfección, al menos económicamente. Y esa es la conclusión a la que también se llegó en otra sesión que lanzó un nuevo libro sobre imperialismo del economista marxista australiano Sam King. El convincente libro de Sam King propone que la tesis de Lenin era correcta en sus fundamentos, a saber, que el capitalismo se había convertido en lo que Lenin llamó “capital financiero monopolista” (si bien su libro no está disponible de forma gratuita, su tesis versa fundamentalmente sobre lo mismo). El mundo se ha polarizado en países ricos y pobres sin perspectivas de que ninguna de las principales sociedades pobres llegue a formar parte de la liga de los ricos. Cien años después, ningún país que fuera pobre en 1916 se ha unido al exclusivo club imperialista (salvo con la excepción de Corea y Taiwán, que se beneficiaron específicamente de las “bendiciones de la guerra fría del imperialismo estadounidense”).

La gran esperanza de la década de 1990, promovida por la economía del desarrollo dominante de que Brasil, Rusia, India, China y Sudáfrica (BRICS) pronto se unirían a la liga de los ricos en el siglo XXI, ha demostrado ser un espejismo. Estos países siguen siendo también rans y todavía están subordinados y explotados por el núcleo imperialista. No hay economías de rango medio, a medio camino, que puedan ser consideradas como “subimperialistas” como sostienen algunos economistas marxistas. King muestra que el imperialismo está vivo y no tan bien para los pueblos del mundo. Y la brecha entre las economías imperialistas y el resto no se está reduciendo, al contrario. Y eso incluye a China, que no se unirá al club imperialista.

Hablando de China, hubo varias sesiones sobre China organizadas por el grupo de trabajo IIPPE China. Las sesiones fueron grabadas y están disponibles para verlas en el canal de YouTube de IIPPE China. La sesión cubrió el sistema estatal de China; sus políticas de inversión extranjera; el papel y la forma de planificación en China y cómo China se enfrentó a la pandemia de COVID.

También hubo una sesión sobre ¿Es capitalista China?, en la que realicé una presentación titulada ¿Cuándo se volvió capitalista China? El título es un poco irónico, porque argumenté que desde la revolución de 1949 que expulsó a los terratenientes compradores y capitalistas (que huyeron a Formosa-Taiwán), China ya no ha sido capitalista. El modo de producción capitalista no domina en la economía china incluso después de las reformas de mercado de Deng en 1978. En mi opinión, China es una “economía de transición” como lo era la Unión Soviética, o lo son ahora Corea del Norte y Cuba.

En mi presentación defino qué es una economía de transición, como la vieron Marx y Engels. China no cumple con todos los criterios: en particular, no hay democracia obrera, no hay igualación o restricciones en los ingresos; y el gran sector capitalista no está disminuyendo constantemente. Pero, por otro lado, los capitalistas no controlan la maquinaria estatal, sino los funcionarios del Partido Comunista; la ley del valor (beneficio) y los mercados no dominan la inversión, sí lo hace el gran sector estatal; y ese sector (y el sector capitalista) tienen la obligación de cumplir con los objetivos de planificación nacional (a expensas de la rentabilidad, si es necesario).

Si China fuera simplemente otra economía capitalista, ¿cómo explicamos su fenomenal éxito en el crecimiento económico, sacando a 850 millones de chinos de la línea de pobreza ?; y evitar las recesiones económicas que las principales economías capitalistas han sufrido de forma regular? Si ha logrado esto con una población de 1.400 millones y, sin embargo, es capitalista, entonces sugiere que puede haber una nueva etapa en la expansión capitalista basada en alguna forma estatal de capitalismo que sea mucho más exitosa que los capitalismos anteriores y ciertamente más que sus pares en India, Brasil, Rusia, Indonesia o Sudáfrica. China sería entonces una refutación de la teoría marxista de la crisis y una justificación del capitalismo. Afortunadamente, podemos atribuir el éxito de China a su sector estatal dominante para la inversión y la planificación, no a la producción capitalista con fines de lucro y al mercado.

Para mí, China se encuentra en una “transición atrapada”. No es capitalista (todavía) pero no avanza hacia el socialismo, donde el modo de producción es a través de la propiedad colectiva de los medios de producción para las necesidades sociales con consumo directo sin mercados, intercambio o dinero. China está atrapada porque todavía está atrasada tecnológicamente y está rodeada de economías imperialistas cada vez más hostiles; pero también está atrapado porque no existen organizaciones democráticas de trabajadores y los burócratas del PC deciden todo, a menudo con resultados desastrosos.

Por supuesto, esta visión de China es minoritaria. Los “expertos en China” occidentales están al unísono de que China es capitalista y una forma desagradable de capitalismo para arrancar, no como los capitalismos “democráticos liberales” del G7. Además, la mayoría de los marxistas están de acuerdo en que China es capitalista e incluso imperialista. En la sesión, Walter Daum argumentó que, incluso si la evidencia económica sugiere que China no es imperialista, políticamente China es imperialista, con sus políticas agresivas hacia los estados vecinos, sus relaciones comerciales y crediticias explotadoras con países pobres y su supresión de minorías étnicas como los uyghars en la provincia de Xinjiang. Otros presentadores, como Dic Lo y Cheng Enfu de China, no estuvieron de acuerdo con Daum, y Cheng caracterizó a China como “socialista con elementos del capitalismo de Estado”, una formulación extraña que suena confusa.

Finalmente, debo mencionar algunas otras presentaciones. Primero, sobre la controvertida cuestión de la financiarización. Los partidarios de la ‘financiarización’ argumentan que el capitalismo ha cambiado en los últimos 50 años de una economía orientada a la producción a una dominada por el sector financiero y son las visiones de este sector inestable las que causan las crisis, no los problemas de rentabilidad en el sector productivo. sectores, como argumentó Marx. Esta teoría ha dominado el pensamiento de los economistas poskeynesianos y marxistas en las últimas décadas. Pero cada vez hay más pruebas de que la teoría no solo es incorrecta teóricamente, sino también empíricamente.

Y en IIPPE, Turan Subasat y Stavros Mavroudeas presentaron aún más evidencia empírica para cuestionar la “financiarización” en su artículo titulado: La hipótesis de la financiarización: una crítica teórica y empírica. Subasat y Mavroudeas encuentran que la afirmación de que la mayoría de las empresas multinacionales más grandes son “financieras” es incorrecta. De hecho, la participación de las finanzas en los EE. UU. Y el Reino Unido no ha aumentado en los últimos 50 años; y durante los últimos 30 años, la participación del sector financiero en el PIB disminuyó en un 51,2% y la participación del sector financiero en los servicios disminuyó en un 65,9% en los países estudiados. Y no hay evidencia de que la expansión del sector financiero sea un predictor significativo del declive de la industria manufacturera, que ha sido causado por otros factores (globalización y cambio técnico).

Y hubo algunos artículos que continuaron confirmando la teoría monetaria de Marx, a saber, que las tasas de interés no están determinadas por una “ tasa de interés natural ” de la oferta y la demanda de ahorros (como argumentan los austriacos) o por la preferencia de liquidez, es decir, el acaparamiento de dinero (como afirman los keynesianos), pero están limitados e impulsados ​​por los movimientos en la rentabilidad del capital y, por lo tanto, la demanda de fondos de inversión. Nikos Stravelakis ofreció un artículo, Una reconciliación de la teoría del interés de Marx y el rompecabezas de la prima de riesgo, que mostraba que las ganancias netas corporativas están relacionadas positivamente con los depósitos bancarios y las ganancias netas a brutas están relacionadas positivamente con la tasa de depósitos de préstamos y que el 60% de las variaciones en las tasas de interés pueden explicarse por cambios en la tasa de ganancia. Y Karl Beitel mostró la estrecha conexión entre el movimiento a largo plazo de la rentabilidad en las principales economías en los últimos 100 años (cayendo) y la tasa de interés de los bonos a largo plazo (cayendo). Esto sugiere que hay un nivel máximo de tasas de interés, como argumentó Marx, determinado por la tasa de ganancia sobre el capital productivo, porque el interés proviene solo de la plusvalía.

Finalmente, algo que no estaba en IIPPE pero que agrega aún más apoyo a la ley de Marx de la tendencia a la caída de la tasa de ganancia. En el libro World in Crisis, coeditado por Carchedi y yo, muchos economistas marxistas presentaron evidencia empírica de la caída de la tasa de ganancia del capital de muchos países diferentes. Ahora podemos agregar otro. En un nuevo artículo, El crecimiento económico y la tasa de ganancia en Colombia 1967-2019, Alberto Carlos Duque de Colombia muestra la misma historia que hemos encontrado en otros lugares. El artículo encuentra que el movimiento en la tasa de ganancia está “en concordancia con las predicciones de la teoría marxista y afecta positivamente la tasa de crecimiento. Y la tasa de crecimiento del PIB se ve afectada por la tasa de ganancia y la tasa de acumulación está en una relación inversa entre estas últimas variables ”.

Por lo tanto, los resultados “son consistentes con los modelos macroeconómicos marxistas revisados en este artículo y brindan apoyo empírico a los mismos. En esos modelos, la tasa de crecimiento es un proceso impulsado por el comportamiento de la tasa de acumulación y la tasa de ganancia. Nuestros análisis econométricos brindan apoyo empírico a la afirmación marxista sobre el papel fundamental de la tasa de ganancia, y sus elementos constitutivos, en la acumulación de capital y, en consecuencia, en el crecimiento económico”.

III. OTRAS REFERENCIAS BIBLIOGRÁFICAS

Advertisement

FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE II, CÓDIGO EN R STUDIO CON COMENTARIOS

ISADORE NABI

##ESTABLECER EL DIRECTORIO DE TRABAJO

setwd(“(…)”)

##LEER EL ARCHIVO DE DATOS. EN ESTE CASO, SUPÓNGASE QUE LOS DATOS SON DE UNA MUESTRA ALEATORIA DE 21 TIENDAS UBICADAS EN DIFERENTES PARTES DEL PAÍS Y A LAS CUALES SE LES REALIZÓ VARIOS ESTUDIOS. PARA ELLO SE MIDIERON ALGUNAS VARIABLES QUE SE PRESENTAN A CONTINUACIÓN

###- menor16= es un indicador de limpieza del lugar, a mayor número más limpio. 

###- ipc= es un indice de producto reparado con defecto, indica el % de producto que se pudo reparar y posteriormente comercializar.

###- ventas= la cantidad de productos vendidos en el último mes.

read.table(“estudios.txt”)

## CREAR EL ARCHIVO Y AGREGAR NOMBRES A LAS COLUMNAS

estudios = read.table(“estudios.txt”, col.names=c(“menor16″,”ipc”,”ventas”))

names(estudios)

nrow(estudios)

ncol(estudios)

dim(estudios)

## REVISAR LA ESTRUCTURA DEL ARCHIVO Y CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR Y LOS CUANTILES PARA LAS VARIABLES DE ESTUDIO Y, ADICIONALMENTE, CONSTRÚYASE UN HISTOGRAMA DE FRECUENCIAS PARA LA VARIABLE “VENTAS”

str(estudios)

attach(estudios)

ventas

###Nota: la función “attach” sirve para adjuntar la base de datos a la ruta de búsqueda R. Esto significa que R busca en la base de datos al evaluar una variable, por lo que se puede acceder a los objetos de la base de datos simplemente dando sus nombres.

###Nota: Al poner el comando “attach”, la base de datos se adjunta a la dirección de búsqueda de R. Entonces ahora pueden llamarse las columnas de la base de datos por su nombre sin necesidad de hacer referencia a la base de datos ventas es una columna -i.e., una variable- de la tabla estudios). Así, al escribrlo, se imprime (i.e., se genera visualmente para la lectura ocular)

## CALCULAR LOS ESTADÍSTICOS POR VARIABLE Y EN CONJUNTO

mean(ventas)

sd(ventas)

var(ventas)

apply(estudios,2,mean)

apply(estudios,2,sd)

###Nota: la función “apply” sirve para aplicar otra función a las filas o columnas de una tabla de datos

###Nota: Si en “apply” se pone un “1” significa que aplicará la función indicada sobre las filas y si se pone un “2” sobre las columnas

## APLICAR LA FUNCIÓN “quantile”.

quantile(ventas) ###El cuantil de función genérica produce cuantiles de muestra correspondientes a las probabilidades dadas. La observación más pequeña corresponde a una probabilidad de 0 y la más grande a una probabilidad de 1.

apply(estudios,2,quantile)

###Nótese que para aplicar la función “apply” debe haberse primero “llamado” (i.e., escrito en una línea de código) antes la función que se aplicará (en este caso es la función “quantile”).

(qv = quantile(ventas,probs=c(0.025,0.975)))

###Aquí se está creando un vector de valores correspondientes a determinada probabilidad (las ventas, en este caso), que para este ejemplo son probabilidades de 0.025 y 0.975 de probabilidad, que expresan determinada proporción de la unidad de estudio que cumple con una determinada característica (que en este ejemplo esta proporción es el porcentaje de tiendas que tienen determinado nivel de ventas -donde la característica es el nivel de ventas-).

## GENERAR UN HISTOGRAMA DE FRECUENCIAS PARA LA COLUMNA “ventas”

hist(ventas)

abline(v=qv,col=2)

###Aquí se indica con “v” el conjunto de valores x para los cuales se graficará una línea. Como se remite a “qv” (que es un vector numérico de dos valores, 141 y 243) en el eje de las x, entonces graficará dos líneas color rojo (una en 141 y otra en 243).

###Aquí “col” es la sintaxis conocida como parte de los “parámetros gráficos” que sirve para especificar el color de las líneas

hist(ventas, breaks=7, col=”red”, xlab=”Ventas”, ylab=”Frecuencia”,

     main=”Gráfico

   Histograma de las ventas”)

detach(estudios)

###”breaks” es la indicación de cuántas particiones tendrá la gráfica (número de rectángulos, para este caso).

## GENERAR UNA DISTRIBUCIÓN N(35,4) CON NÚMEROS PSEUDOALEATORIOS PARA UN TAMAÑO DE MUESTRA n=1000

y = rnorm(1000,35,2)

hist(y)

qy = quantile(y,probs=c(0.025,0.975))

hist(y,freq=F)

abline(v=qy,col=2)

lines(density(y),col=2) #”lines” es una función genérica que toma coordenadas dadas de varias formas y une los puntos correspondientes con segmentos de línea.

## GENERAR UNA FUNCIÓN CON LAS VARIABLES n (CANTIDAD DE DATOS), m (MEDIA MUESTRAL) y  s (DESVIACIÓN ESTÁNDAR MUESTRAL) QUE ESTIME Y GRAFIQUE, ADEMÁS DE LOS CÁLCULOS DEL INCISO ANTERIOR, LA MEDIA.

plot.m = function(n,m,s) {

  y = rnorm(n,m,s)

  qy = quantile(y,probs=c(0.025,0.975))

  hist(y,freq=F)

  abline(v=qy,col=2)

  lines(density(y),col=2) ###Aquí se agrega una densidad teórica (una curva que dibuja una distribución de probabilidad -de masa o densidad- de referencia), la cual aparece en color rojo.

  mean(y)

}

## OBTENER UNA MUESTRA DE TAMAÑO n=10 DE N(100, 15^2)

plot.m(10000,100,15)

###Nótese que formalmente la distribución normal se caracteriza siempre por su media y varianza, aunque en la sintaxis “rnorm” de R se introduzca su media y la raíz de su varianza (la desviación estándar muestral)

##Generar mil repeticiones e ingresarlas en un vector. Compárense sus medias y desviaciones estándar.

n=10000; m=100;s=15

I = 1000 ###”I” son las iteraciones

medias = numeric(I)

for(i in 1:I)           {#”for” es un bucle (sintaxis usada usualmente para crear funciones personalizadas)

  sam=rnorm(n,m,s) ###Aquí se crea una variable llamada “sam” (de “sample”, i.e., muestra) que contiene una la distribución normal creada con números pseudoaleatorios.

  medias[i]=mean(sam)   } ###”sam” se almacena en la i-ésima posición la i-ésima media generada con “rnorm” que le corresponde dentro del vector numérico de iteraciones (el que contiene las medias de cada iteración) medias[i] (que contiene los elementos generados con la función “mean(sam)”).

###Un bucle es una interrupción repetida del flujo regular de un programa; pueden concebirse como órbitas (en el contexto de los sistemas dinámicos) computacionales. Un programa está diseñado para ejecutar cada línea ordenadamente (una a una) de forma secuencial 1,2,3,…,n. En la línea m el programa entiende que tiene que ejecutar todo lo que esté entre la línea n y la línea m y repetirlo, en orden secuencial, una cantidad x de veces. Entonces el flujo del programa sería, para el caso de un flujo regular  1,2,3,(4,5,…,m),(4,5,…,m),…*x,m+1,m+2,…,n.

## UTILIZAR LA VARIABLE “medias[i]” GENERADA EN EL INCISO ANTERIOR PARA DETERMINAR LA DESVIACIÓN ESTÁNDAR DE ESE CONJUNTO DE MEDIAS (ALMACENADO EN “medias[i]”) Y DETERMINAR SU EQUIVALENCIA CON EL ERROR ESTÁNDAR DE LA MEDIA (e.e.)

###Lo anterior evidentemente implica que se está construyendo sintéticamente (a través de bucles computacionales) lo que, por ejemplo, en un laboratorio botánico se registra a nivel de datos (como en el que Karl Pearson y Student hacían sus experimentos y los registraban estadísticamente) y luego se analiza en términos de los métodos de la estadística descriptiva e inferencial (puesto que a esos dominios pertenece el e.e.).

sd(medias)     ### desviación de la distribución de las medias

(ee = s/sqrt(n)  )### equivalencia teórica

## COMPARAR LA DISTRIBUCIÓN DE MEDIAS

m

mean(medias)

## GRAFICAR LA DISTRIBUCIÓN DE MEDIAS GENERADA EN EL INCISO ANTERIOR

hist(medias)

qm = quantile(medias,probs=c(0.025,0.975))

hist(medias,freq=F)

abline(v=qm,col=2)

lines(density(medias),col=2)

## GENERAR UN INTERVALO DE CONFIANZA CON UN NIVEL DE 0.95 PARA LA MEDIA DE LAS VARIABLES SUJETAS A ESTUDIO

attach(estudios)

### Percentil 0.975 de la distribución t-student para 95% de área bajo la curva

n = length(ventas) ###Cardinalidad o módulo del conjunto de datos

t = qt(0.975,n-1) ###valor t de la distribución t de student correspondiente a un nivel de probabilidad y n-1 gl

###Se denominan pruebas t porque todos los resultados de la prueba se basan en valores t. Los valores T son un ejemplo de lo que los estadísticos llaman estadísticas de prueba. Una estadística de prueba es un valor estandarizado que se calcula a partir de datos de muestra durante una prueba de hipótesis. El procedimiento que calcula la estadística de prueba compara sus datos con lo que se espera bajo la hipótesis nula (fuente: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-t-values-and-t-distributions).

###”qt” es la sintaxis que especifica un valor t determinado de la variable aleatoria de manera que la probabilidad de que esta variable sea menor o igual a este determinado valor t es igual a la probabilidad dada (que en la sintaxis de R se designa como p)

###Para más información véase https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/

###”n-1″ son los grados de libertad de la distribución t de student.

#### Error Estándar

ee = sd(ventas)/sqrt(n)

### Intervalo

mean(ventas)-t*ee

mean(ventas)+t*ee

mean(ventas)+c(-1,1)*t*ee ###c(-1,1) es un vector que se introduce artificialmente para poder construir el intervalo de confianza al 95% (u a otro nivel de confianza deseado) en una sola línea de código.

## ELABORAR UNA FUNCIÓN QUE PERMITA CONSTRUIR UN INTERVALO DE CONFIANZA AL P% DE NIVEL DE CONFIANZA PARA LA VARIABLE X

ic = function(x,p) {

  n = length(x)

  t = qt(p+((1-p)/2),n-1)

  ee = sd(x)/sqrt(n)

  mean(x)+c(-1,1)*t*ee

}

###Intervalo de 95% confianza para ventas

ic(ventas,0.95)

ic(ventas,0.99)

###El nivel de confianza hace que el intervalo de confianza sea más grande pues esto implica que los estadísticos de prueba (las versiones muestrales de los parámetros poblacionales) son más estadísticamente más robustos, por lo que su vecindario de aplicación es más amplio.

ic(ipc,0.95)

ic(menor16,0.95)

## REALIZAR LA PRUEBA DE HIPÓTESIS (PARA UNA MUESTRA) DENTRO DEL INTERVALO DE CONFIANZA GENERADO AL P% DE NIVEL DE CONFIANZA

t.test(ventas,mu=180) ###Por defecto, salvo que se cambie tal configuración, R realiza esta prueba a un nivel de confianza de 0.95.

### Realizando manualmente el cálculo anterior:

(t2=(mean(ventas)-180)/ee) ###Aquí se calcula el valor t por separado (puesto que la sintaxis “t.test” lo estima por defecto, como puede verificarse en la consola tras correr el código). Se denota con “t2” porque anteriormente se había definido en la línea de código 106 t = qt(0.975,n-1) para la construcción manual de los intervalos de confianza.

2*(1-pt(t2,20)) ###Aquí se calcula manualmente el valor p. Se multiplica por dos para tener la probabilidad acumulada total (considerando ambas colas) al valor t (t2, siendo más precisos) definido, pues esta es la definición de valor p. Esto se justifica por el hecho de la simetría geométrica de la distribución normal, la cual hace que la probabilidad acumulada (dentro de un intervalo de igual longitud) a un lado de la media sea igual a la acumulada (bajo la condición especificada antes) a la derecha de la media.

2*(pt(-t2,20)) ###Si el signo resultante de t fuese negativo. Además, 20 es debido a n-1 = 21-1 = 20.

###La sintaxis “pt” calcula el valor de la función de densidad acumulada (cdf) de la distribución t de Student dada una determinada variable aleatoria x y grados de libertad df (degrees of freedom, equivalente a gl en español), véase https://www.statology.org/working-with-the-student-t-distribution-in-r-dt-qt-pt-rt/

## CREAR UNA VARIABLE QUE PERMITA SEPARAR ESPACIALMENTE (AL INTERIOR DE LA GRÁFICA QUE LOS REPRESENTA) AQUELLOS ipc MENORES A UN VALOR h (h=117) DE AQUELLOS QUE SON IGUALES O MAYORES QUE h (h=117)

(ipc1 = 1*(ipc<17)+2*(ipc>=17))

ipc2=factor(ipc1,levels=c(1,2),labels=c(“uno”,”dos”))

plot(ipc2,ipc)

abline(h=17,col=2)

## GENERAR GRÁFICO DE DIAMENTE CON LOS INTERVALOS DE CONFIANZA AL 0.95 DE NdC CENTRADOS EN LAS MEDIAS DE CADA GRUPO CREADO ALREDEDOR DE 17 Y UN BOX-PLOT

library(gplots)

plotmeans(ventas~ipc2) ###Intervalos del 95% alrededor de la media (GRÁFICO DE DIMANTES)

boxplot(ventas~ipc2)

## REALIZAR LA PRUEBA DE HIPÓTESIS DE QUE LA MEDIA ES LA MISMA PARA LOS DOS GRUPOS GENERADOS ALREDEDOR DE h=17

(med = tapply(ventas,ipc1,mean))

(dev = tapply(ventas,ipc1,sd))

(var = tapply(ventas,ipc1,var))

(n   = table(ipc1))

dif=med[1]-med[2]

###La sintaxis “tapply” aplica una función a cada celda de una matriz irregular (una matriz es irregular si la cantidad de elementos de cada fila varía), es decir, a cada grupo (no vacío) de valores dados por una combinación única de los niveles de ciertos factores.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 1: ASUMIENDO VARIANZAS IGUALES (SUPUESTO QUE EN ESCENARIOS REALES DEBERÁ VERIFICARSE CON ANTELACIÓN)

varpond= ((n[1]-1)*var[1] + (n[2]-1)*var[2])/(n[1]+n[2]-2) ###Aquí se usa una varianza muestral ponderada como medida más precisa (dado que el tamaño de los grupos difiere) de una varianza muestral común entre los dos grupos construidos alrededor de h=17

e.e=sqrt((varpond/n[1])+(varpond/n[2]))

dif/e.e

t.test(ventas~ipc1,var.equal=T)

t.test(ventas~ipc1)  #Por defecto la sintaxis “t.test” considera las varianzas iguales, por lo que en un escenario de diferentes varianzas deberá ajustarse esto como se muestra a continuación.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 2: ASUMIENDO VARIANZAS DESIGUALES (AL IGUAL QUE ANTES, ESTO DEBE VERIFICARSE)

e.e2=sqrt((var[1]/n[1])+(var[2]/n[2]))

dif/e.e2

a=((var[1]/n[1]) + (var[2]/n[2]))^2

b=(((var[1]/n[1])^2)/(n[1]-1)) +(((var[2]/n[2])^2)/(n[2]-1))

(glmod=a/b)

t.test(ventas~ipc1,var.equal=F)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al cero (porque la Ho afirma que la verdadera diferencia en las medias -i.e., su significancia estadística- es nula).

###Conceptualmente hablando, una diferencia estadísticamente significativa expresa una variación significativa en el patrón geométrico que describe al conjunto de datos. Véase https://marxianstatistics.com/2021/08/27/modelos-lineales-generalizados/. Lo que define si una determinada variación es significativa o no está condicionado por el contexto en que se realiza la investigación y la naturaleza misma del fenómeno estudiado.

## REALIZAR PRUEBA F PARA COMPARAR LA VARIANZA DE LOS GRUPOS Y LA PROBABILIDAD ASOCIADA

(razon.2 = var[1]/var[2]) ###Ratio de varianzas (asumiendo que las varianzas poblacionales son equivalentes a la unidad, en otro caso su estimación sería matemáticamente diferente; véase https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_power/bs704_power_print.html y https://stattrek.com/online-calculator/f-distribution.aspx).

pf(razon.2,n[1]-1,n[2]-1) ###Al igual que “pt” (para el caso de la t de Student que compara medias de dos grupos o muestras), “pf” en el contexto de la prueba F (que compara la varianza de dos grupos o muestras) calcula la probabilidad acumulada que existe hasta determinado valor.

###La forma general mínima (más sintética) de la sintaxis “pf” es “pf(x, df1, df2)”, en donde “x” es el vector numérico (en este caso, de un elemento), df1 son los gl del numerador y df2 son los grados de libertad del denominador de la distribución F (cuya forma matemática puede verificarse en la documentación de R; véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html).

(2*pf(razon.2,n[1]-1,n[2]-1)) ###Aquí se calcula el valor p manualmente.

###Realizando de forma automatizada el procedimiento anterior:

var.test(ventas~ipc1)

detach(estudios)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al 1 porque la Ho afirma que la varianza de ambas muestras es igual (lo que implica que su cociente o razón debe ser 1), lo que equivale a afirmar que la diferencia real entre desviaciones (la significancia estadística de esta diferencia) es nula.

## EN EL ESCENARIO DEL ANÁLISIS DE MUESTRAS PAREADAS, ANALIZAR LOS DATOS SOBRE EL EFECTO DE DOS DROGAS EN LAS HORAS DE SUEÑO DE UN GRUPO DE PACIENTES (CONTENIDOS EN EL ARCHIVO “sleep” DE R)

attach(sleep) ###”sleep” es un archivo de datos nativo de R, por ello puede “llamarse” sin especificaciones de algún tipo.

plot(extra ~ group)

plotmeans(extra ~ group,connect=F)  ###Intervalos del 95% alrededor de la media. El primer insumo (entrada) de la aplicación “plotmeans” es cualquier expresión simbólica que especifique la variable dependiente o de respuesta (continuo) y la variable independiente o de agrupación (factor). En el contexto de una función lineal, como la función “lm()” que es empleada por “plotmeans” para graficar (véase la documentación de R sobre “plotmeans”), sirve para separar la variable dependiente de la o las variables independientes, las cuales en este caso de aplicación son los factores o variables de agrupación (puesto que se está en el contexto de casos clínicos y, en este contexto, las variables independientes son las variables que sirven de criterio para determinar la forma de agrupación interna del conjunto de datos; este conjunto de datos contiene las observaciones relativas al efecto de dos drogas diferentes sobre las horas de sueño del conjunto de pacientes-).

A = sleep[sleep$group == 1,] ###El símbolo “$” sirve para acceder a una variable (columna) de la matriz de datos, en este caso la número 1 (por ello el “1”).

B = sleep[sleep$group == 2,]

plot(1:10,A$extra,type=”l”,col=”red”,ylim=c(-2,7),main=”Gráfico 1

Horas de sueño entre pacientes con el tratamiento A y B”,ylab=”Horas”,xlab=”Numero de paciente”,cex.main=0.8)

lines(B$extra,col=”blue”)

legend(1,6,legend=c(“A”,”B”),col=c(“red”,”blue”),lwd=1,box.col=”black”,cex=1)

t.test(A$extra,B$extra)

t.test(A$extra,B$extra,paired=T)

t.test(A$extra-B$extra,mu=0)

###Una variable de agrupación (también llamada variable de codificación, variable de grupo o simplemente variable) clasifica las observaciones dentro de los archivos de datos en categorías o grupos. Le dice al sistema informático (sea cual fuere) cómo el usuario ha clasificado los datos en grupos. Las variables de agrupación pueden ser categóricas, binarias o numéricas.

###Cuando se desea realizar un comando dentro del texto (en un contexto de formato Rmd) se utiliza así,por ejemplo se podría decir que la media del sueño extra es `r mean(sleep$extra)` y la cantidad de datos son `r length(sleep$extra)`

## ESTIMACIÓN DE LA POTENCIA DE UNA PRUEBA DE HIPÓTESIS (PROBABILIDAD BETA DE COMETER ERROR TIPO II)

library(pwr) ###”pwr” es una base de datos nativa de R

delta=3 ###Nivel de Resolución de la prueba. Para un valor beta (probabilidad de cometer error tipo II) establecido el nivel de resolución es la distancia mínima que se desea que la prueba sea capaz de detectar, es decir, que si existe una distancia entre los promedios tal que la prueba muy probablemente rechace la hipótesis nula Ho. Para el cálculo manual de la probabilidad beta véase el complemento de este documento (FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE I, TEORÍA ESTADÍSTICA)

s=10.2 ###Desviación estándar muestral

(d=delta/s) #Tamano del efecto.

pwr.t.test(n=NULL,d=d,power =0.9,type=”one.sample”)

## ESTIMAR CON EL VALOR ÓPTIMO PARA EL NIVEL DE RESOLUCIÓN, PARTIENDO DE n=40 Y MANTENIENDO LA POTENCIA DE 0.9

(potencia=pwr.t.test(n=40,d=NULL,power =0.9,type=”one.sample”))

potencia$d*s  #Delta

## GRAFICAR LAS DIFERENTES COMBINACIONES DE TAMAÑO DE MUESTRA Y NIVEL DE RESOLUCIÓN PARA UNA POTENCIA DE LA PRUEBA FIJA

s=10.2

deltas=seq(2,6,length=30)

n=numeric(30)

for(i in 1:30) {

  (d[i]=deltas[i]/s)

  w=pwr.t.test(n=NULL,d=d[i],power =0.9,type=”one.sample”)

  n[i]=w$n

}

plot(deltas,n,type=”l”)

## SUPÓNGASE QUE SE QUIERE PROBAR SI DOS GRUPOS PRESENTAN DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN LOS NIVELES PROMEDIO DE AMILASA, PARA LO CUAL SE CONSIDERA IMPORTANTE DETECTAR DIFERENCIAS DE 15 UNIDADES/ML O MÁS ENTRE LOS PROMEDIOS

s2p=290.9  ###Varianza ponderada de los dos grupos

(sp=sqrt(s2p)) ###Desviación estándar ponderada de los dos grupos

delta=15

(d=delta/sp)

pwr.t.test(n=NULL,d=d,power =0.9,type=”two.sample”)