FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE II, CÓDIGO EN R STUDIO CON COMENTARIOS

ISADORE NABI

##ESTABLECER EL DIRECTORIO DE TRABAJO

setwd(“(…)”)

##LEER EL ARCHIVO DE DATOS. EN ESTE CASO, SUPÓNGASE QUE LOS DATOS SON DE UNA MUESTRA ALEATORIA DE 21 TIENDAS UBICADAS EN DIFERENTES PARTES DEL PAÍS Y A LAS CUALES SE LES REALIZÓ VARIOS ESTUDIOS. PARA ELLO SE MIDIERON ALGUNAS VARIABLES QUE SE PRESENTAN A CONTINUACIÓN

###- menor16= es un indicador de limpieza del lugar, a mayor número más limpio. 

###- ipc= es un indice de producto reparado con defecto, indica el % de producto que se pudo reparar y posteriormente comercializar.

###- ventas= la cantidad de productos vendidos en el último mes.

read.table(“estudios.txt”)

## CREAR EL ARCHIVO Y AGREGAR NOMBRES A LAS COLUMNAS

estudios = read.table(“estudios.txt”, col.names=c(“menor16″,”ipc”,”ventas”))

names(estudios)

nrow(estudios)

ncol(estudios)

dim(estudios)

## REVISAR LA ESTRUCTURA DEL ARCHIVO Y CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR Y LOS CUANTILES PARA LAS VARIABLES DE ESTUDIO Y, ADICIONALMENTE, CONSTRÚYASE UN HISTOGRAMA DE FRECUENCIAS PARA LA VARIABLE “VENTAS”

str(estudios)

attach(estudios)

ventas

###Nota: la función “attach” sirve para adjuntar la base de datos a la ruta de búsqueda R. Esto significa que R busca en la base de datos al evaluar una variable, por lo que se puede acceder a los objetos de la base de datos simplemente dando sus nombres.

###Nota: Al poner el comando “attach”, la base de datos se adjunta a la dirección de búsqueda de R. Entonces ahora pueden llamarse las columnas de la base de datos por su nombre sin necesidad de hacer referencia a la base de datos ventas es una columna -i.e., una variable- de la tabla estudios). Así, al escribrlo, se imprime (i.e., se genera visualmente para la lectura ocular)

## CALCULAR LOS ESTADÍSTICOS POR VARIABLE Y EN CONJUNTO

mean(ventas)

sd(ventas)

var(ventas)

apply(estudios,2,mean)

apply(estudios,2,sd)

###Nota: la función “apply” sirve para aplicar otra función a las filas o columnas de una tabla de datos

###Nota: Si en “apply” se pone un “1” significa que aplicará la función indicada sobre las filas y si se pone un “2” sobre las columnas

## APLICAR LA FUNCIÓN “quantile”.

quantile(ventas) ###El cuantil de función genérica produce cuantiles de muestra correspondientes a las probabilidades dadas. La observación más pequeña corresponde a una probabilidad de 0 y la más grande a una probabilidad de 1.

apply(estudios,2,quantile)

###Nótese que para aplicar la función “apply” debe haberse primero “llamado” (i.e., escrito en una línea de código) antes la función que se aplicará (en este caso es la función “quantile”).

(qv = quantile(ventas,probs=c(0.025,0.975)))

###Aquí se está creando un vector de valores correspondientes a determinada probabilidad (las ventas, en este caso), que para este ejemplo son probabilidades de 0.025 y 0.975 de probabilidad, que expresan determinada proporción de la unidad de estudio que cumple con una determinada característica (que en este ejemplo esta proporción es el porcentaje de tiendas que tienen determinado nivel de ventas -donde la característica es el nivel de ventas-).

## GENERAR UN HISTOGRAMA DE FRECUENCIAS PARA LA COLUMNA “ventas”

hist(ventas)

abline(v=qv,col=2)

###Aquí se indica con “v” el conjunto de valores x para los cuales se graficará una línea. Como se remite a “qv” (que es un vector numérico de dos valores, 141 y 243) en el eje de las x, entonces graficará dos líneas color rojo (una en 141 y otra en 243).

###Aquí “col” es la sintaxis conocida como parte de los “parámetros gráficos” que sirve para especificar el color de las líneas

hist(ventas, breaks=7, col=”red”, xlab=”Ventas”, ylab=”Frecuencia”,

     main=”Gráfico

   Histograma de las ventas”)

detach(estudios)

###”breaks” es la indicación de cuántas particiones tendrá la gráfica (número de rectángulos, para este caso).

## GENERAR UNA DISTRIBUCIÓN N(35,4) CON NÚMEROS PSEUDOALEATORIOS PARA UN TAMAÑO DE MUESTRA n=1000

y = rnorm(1000,35,2)

hist(y)

qy = quantile(y,probs=c(0.025,0.975))

hist(y,freq=F)

abline(v=qy,col=2)

lines(density(y),col=2) #”lines” es una función genérica que toma coordenadas dadas de varias formas y une los puntos correspondientes con segmentos de línea.

## GENERAR UNA FUNCIÓN CON LAS VARIABLES n (CANTIDAD DE DATOS), m (MEDIA MUESTRAL) y  s (DESVIACIÓN ESTÁNDAR MUESTRAL) QUE ESTIME Y GRAFIQUE, ADEMÁS DE LOS CÁLCULOS DEL INCISO ANTERIOR, LA MEDIA.

plot.m = function(n,m,s) {

  y = rnorm(n,m,s)

  qy = quantile(y,probs=c(0.025,0.975))

  hist(y,freq=F)

  abline(v=qy,col=2)

  lines(density(y),col=2) ###Aquí se agrega una densidad teórica (una curva que dibuja una distribución de probabilidad -de masa o densidad- de referencia), la cual aparece en color rojo.

  mean(y)

}

## OBTENER UNA MUESTRA DE TAMAÑO n=10 DE N(100, 15^2)

plot.m(10000,100,15)

###Nótese que formalmente la distribución normal se caracteriza siempre por su media y varianza, aunque en la sintaxis “rnorm” de R se introduzca su media y la raíz de su varianza (la desviación estándar muestral)

##Generar mil repeticiones e ingresarlas en un vector. Compárense sus medias y desviaciones estándar.

n=10000; m=100;s=15

I = 1000 ###”I” son las iteraciones

medias = numeric(I)

for(i in 1:I)           {#”for” es un bucle (sintaxis usada usualmente para crear funciones personalizadas)

  sam=rnorm(n,m,s) ###Aquí se crea una variable llamada “sam” (de “sample”, i.e., muestra) que contiene una la distribución normal creada con números pseudoaleatorios.

  medias[i]=mean(sam)   } ###”sam” se almacena en la i-ésima posición la i-ésima media generada con “rnorm” que le corresponde dentro del vector numérico de iteraciones (el que contiene las medias de cada iteración) medias[i] (que contiene los elementos generados con la función “mean(sam)”).

###Un bucle es una interrupción repetida del flujo regular de un programa; pueden concebirse como órbitas (en el contexto de los sistemas dinámicos) computacionales. Un programa está diseñado para ejecutar cada línea ordenadamente (una a una) de forma secuencial 1,2,3,…,n. En la línea m el programa entiende que tiene que ejecutar todo lo que esté entre la línea n y la línea m y repetirlo, en orden secuencial, una cantidad x de veces. Entonces el flujo del programa sería, para el caso de un flujo regular  1,2,3,(4,5,…,m),(4,5,…,m),…*x,m+1,m+2,…,n.

## UTILIZAR LA VARIABLE “medias[i]” GENERADA EN EL INCISO ANTERIOR PARA DETERMINAR LA DESVIACIÓN ESTÁNDAR DE ESE CONJUNTO DE MEDIAS (ALMACENADO EN “medias[i]”) Y DETERMINAR SU EQUIVALENCIA CON EL ERROR ESTÁNDAR DE LA MEDIA (e.e.)

###Lo anterior evidentemente implica que se está construyendo sintéticamente (a través de bucles computacionales) lo que, por ejemplo, en un laboratorio botánico se registra a nivel de datos (como en el que Karl Pearson y Student hacían sus experimentos y los registraban estadísticamente) y luego se analiza en términos de los métodos de la estadística descriptiva e inferencial (puesto que a esos dominios pertenece el e.e.).

sd(medias)     ### desviación de la distribución de las medias

(ee = s/sqrt(n)  )### equivalencia teórica

## COMPARAR LA DISTRIBUCIÓN DE MEDIAS

m

mean(medias)

## GRAFICAR LA DISTRIBUCIÓN DE MEDIAS GENERADA EN EL INCISO ANTERIOR

hist(medias)

qm = quantile(medias,probs=c(0.025,0.975))

hist(medias,freq=F)

abline(v=qm,col=2)

lines(density(medias),col=2)

## GENERAR UN INTERVALO DE CONFIANZA CON UN NIVEL DE 0.95 PARA LA MEDIA DE LAS VARIABLES SUJETAS A ESTUDIO

attach(estudios)

### Percentil 0.975 de la distribución t-student para 95% de área bajo la curva

n = length(ventas) ###Cardinalidad o módulo del conjunto de datos

t = qt(0.975,n-1) ###valor t de la distribución t de student correspondiente a un nivel de probabilidad y n-1 gl

###Se denominan pruebas t porque todos los resultados de la prueba se basan en valores t. Los valores T son un ejemplo de lo que los estadísticos llaman estadísticas de prueba. Una estadística de prueba es un valor estandarizado que se calcula a partir de datos de muestra durante una prueba de hipótesis. El procedimiento que calcula la estadística de prueba compara sus datos con lo que se espera bajo la hipótesis nula (fuente: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-t-values-and-t-distributions).

###”qt” es la sintaxis que especifica un valor t determinado de la variable aleatoria de manera que la probabilidad de que esta variable sea menor o igual a este determinado valor t es igual a la probabilidad dada (que en la sintaxis de R se designa como p)

###Para más información véase https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/

###”n-1″ son los grados de libertad de la distribución t de student.

#### Error Estándar

ee = sd(ventas)/sqrt(n)

### Intervalo

mean(ventas)-t*ee

mean(ventas)+t*ee

mean(ventas)+c(-1,1)*t*ee ###c(-1,1) es un vector que se introduce artificialmente para poder construir el intervalo de confianza al 95% (u a otro nivel de confianza deseado) en una sola línea de código.

## ELABORAR UNA FUNCIÓN QUE PERMITA CONSTRUIR UN INTERVALO DE CONFIANZA AL P% DE NIVEL DE CONFIANZA PARA LA VARIABLE X

ic = function(x,p) {

  n = length(x)

  t = qt(p+((1-p)/2),n-1)

  ee = sd(x)/sqrt(n)

  mean(x)+c(-1,1)*t*ee

}

###Intervalo de 95% confianza para ventas

ic(ventas,0.95)

ic(ventas,0.99)

###El nivel de confianza hace que el intervalo de confianza sea más grande pues esto implica que los estadísticos de prueba (las versiones muestrales de los parámetros poblacionales) son más estadísticamente más robustos, por lo que su vecindario de aplicación es más amplio.

ic(ipc,0.95)

ic(menor16,0.95)

## REALIZAR LA PRUEBA DE HIPÓTESIS (PARA UNA MUESTRA) DENTRO DEL INTERVALO DE CONFIANZA GENERADO AL P% DE NIVEL DE CONFIANZA

t.test(ventas,mu=180) ###Por defecto, salvo que se cambie tal configuración, R realiza esta prueba a un nivel de confianza de 0.95.

### Realizando manualmente el cálculo anterior:

(t2=(mean(ventas)-180)/ee) ###Aquí se calcula el valor t por separado (puesto que la sintaxis “t.test” lo estima por defecto, como puede verificarse en la consola tras correr el código). Se denota con “t2” porque anteriormente se había definido en la línea de código 106 t = qt(0.975,n-1) para la construcción manual de los intervalos de confianza.

2*(1-pt(t2,20)) ###Aquí se calcula manualmente el valor p. Se multiplica por dos para tener la probabilidad acumulada total (considerando ambas colas) al valor t (t2, siendo más precisos) definido, pues esta es la definición de valor p. Esto se justifica por el hecho de la simetría geométrica de la distribución normal, la cual hace que la probabilidad acumulada (dentro de un intervalo de igual longitud) a un lado de la media sea igual a la acumulada (bajo la condición especificada antes) a la derecha de la media.

2*(pt(-t2,20)) ###Si el signo resultante de t fuese negativo. Además, 20 es debido a n-1 = 21-1 = 20.

###La sintaxis “pt” calcula el valor de la función de densidad acumulada (cdf) de la distribución t de Student dada una determinada variable aleatoria x y grados de libertad df (degrees of freedom, equivalente a gl en español), véase https://www.statology.org/working-with-the-student-t-distribution-in-r-dt-qt-pt-rt/

## CREAR UNA VARIABLE QUE PERMITA SEPARAR ESPACIALMENTE (AL INTERIOR DE LA GRÁFICA QUE LOS REPRESENTA) AQUELLOS ipc MENORES A UN VALOR h (h=117) DE AQUELLOS QUE SON IGUALES O MAYORES QUE h (h=117)

(ipc1 = 1*(ipc<17)+2*(ipc>=17))

ipc2=factor(ipc1,levels=c(1,2),labels=c(“uno”,”dos”))

plot(ipc2,ipc)

abline(h=17,col=2)

## GENERAR GRÁFICO DE DIAMENTE CON LOS INTERVALOS DE CONFIANZA AL 0.95 DE NdC CENTRADOS EN LAS MEDIAS DE CADA GRUPO CREADO ALREDEDOR DE 17 Y UN BOX-PLOT

library(gplots)

plotmeans(ventas~ipc2) ###Intervalos del 95% alrededor de la media (GRÁFICO DE DIMANTES)

boxplot(ventas~ipc2)

## REALIZAR LA PRUEBA DE HIPÓTESIS DE QUE LA MEDIA ES LA MISMA PARA LOS DOS GRUPOS GENERADOS ALREDEDOR DE h=17

(med = tapply(ventas,ipc1,mean))

(dev = tapply(ventas,ipc1,sd))

(var = tapply(ventas,ipc1,var))

(n   = table(ipc1))

dif=med[1]-med[2]

###La sintaxis “tapply” aplica una función a cada celda de una matriz irregular (una matriz es irregular si la cantidad de elementos de cada fila varía), es decir, a cada grupo (no vacío) de valores dados por una combinación única de los niveles de ciertos factores.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 1: ASUMIENDO VARIANZAS IGUALES (SUPUESTO QUE EN ESCENARIOS REALES DEBERÁ VERIFICARSE CON ANTELACIÓN)

varpond= ((n[1]-1)*var[1] + (n[2]-1)*var[2])/(n[1]+n[2]-2) ###Aquí se usa una varianza muestral ponderada como medida más precisa (dado que el tamaño de los grupos difiere) de una varianza muestral común entre los dos grupos construidos alrededor de h=17

e.e=sqrt((varpond/n[1])+(varpond/n[2]))

dif/e.e

t.test(ventas~ipc1,var.equal=T)

t.test(ventas~ipc1)  #Por defecto la sintaxis “t.test” considera las varianzas iguales, por lo que en un escenario de diferentes varianzas deberá ajustarse esto como se muestra a continuación.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 2: ASUMIENDO VARIANZAS DESIGUALES (AL IGUAL QUE ANTES, ESTO DEBE VERIFICARSE)

e.e2=sqrt((var[1]/n[1])+(var[2]/n[2]))

dif/e.e2

a=((var[1]/n[1]) + (var[2]/n[2]))^2

b=(((var[1]/n[1])^2)/(n[1]-1)) +(((var[2]/n[2])^2)/(n[2]-1))

(glmod=a/b)

t.test(ventas~ipc1,var.equal=F)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al cero (porque la Ho afirma que la verdadera diferencia en las medias -i.e., su significancia estadística- es nula).

###Conceptualmente hablando, una diferencia estadísticamente significativa expresa una variación significativa en el patrón geométrico que describe al conjunto de datos. Véase https://marxianstatistics.com/2021/08/27/modelos-lineales-generalizados/. Lo que define si una determinada variación es significativa o no está condicionado por el contexto en que se realiza la investigación y la naturaleza misma del fenómeno estudiado.

## REALIZAR PRUEBA F PARA COMPARAR LA VARIANZA DE LOS GRUPOS Y LA PROBABILIDAD ASOCIADA

(razon.2 = var[1]/var[2]) ###Ratio de varianzas (asumiendo que las varianzas poblacionales son equivalentes a la unidad, en otro caso su estimación sería matemáticamente diferente; véase https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_power/bs704_power_print.html y https://stattrek.com/online-calculator/f-distribution.aspx).

pf(razon.2,n[1]-1,n[2]-1) ###Al igual que “pt” (para el caso de la t de Student que compara medias de dos grupos o muestras), “pf” en el contexto de la prueba F (que compara la varianza de dos grupos o muestras) calcula la probabilidad acumulada que existe hasta determinado valor.

###La forma general mínima (más sintética) de la sintaxis “pf” es “pf(x, df1, df2)”, en donde “x” es el vector numérico (en este caso, de un elemento), df1 son los gl del numerador y df2 son los grados de libertad del denominador de la distribución F (cuya forma matemática puede verificarse en la documentación de R; véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html).

(2*pf(razon.2,n[1]-1,n[2]-1)) ###Aquí se calcula el valor p manualmente.

###Realizando de forma automatizada el procedimiento anterior:

var.test(ventas~ipc1)

detach(estudios)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al 1 porque la Ho afirma que la varianza de ambas muestras es igual (lo que implica que su cociente o razón debe ser 1), lo que equivale a afirmar que la diferencia real entre desviaciones (la significancia estadística de esta diferencia) es nula.

## EN EL ESCENARIO DEL ANÁLISIS DE MUESTRAS PAREADAS, ANALIZAR LOS DATOS SOBRE EL EFECTO DE DOS DROGAS EN LAS HORAS DE SUEÑO DE UN GRUPO DE PACIENTES (CONTENIDOS EN EL ARCHIVO “sleep” DE R)

attach(sleep) ###”sleep” es un archivo de datos nativo de R, por ello puede “llamarse” sin especificaciones de algún tipo.

plot(extra ~ group)

plotmeans(extra ~ group,connect=F)  ###Intervalos del 95% alrededor de la media. El primer insumo (entrada) de la aplicación “plotmeans” es cualquier expresión simbólica que especifique la variable dependiente o de respuesta (continuo) y la variable independiente o de agrupación (factor). En el contexto de una función lineal, como la función “lm()” que es empleada por “plotmeans” para graficar (véase la documentación de R sobre “plotmeans”), sirve para separar la variable dependiente de la o las variables independientes, las cuales en este caso de aplicación son los factores o variables de agrupación (puesto que se está en el contexto de casos clínicos y, en este contexto, las variables independientes son las variables que sirven de criterio para determinar la forma de agrupación interna del conjunto de datos; este conjunto de datos contiene las observaciones relativas al efecto de dos drogas diferentes sobre las horas de sueño del conjunto de pacientes-).

A = sleep[sleep$group == 1,] ###El símbolo “$” sirve para acceder a una variable (columna) de la matriz de datos, en este caso la número 1 (por ello el “1”).

B = sleep[sleep$group == 2,]

plot(1:10,A$extra,type=”l”,col=”red”,ylim=c(-2,7),main=”Gráfico 1

Horas de sueño entre pacientes con el tratamiento A y B”,ylab=”Horas”,xlab=”Numero de paciente”,cex.main=0.8)

lines(B$extra,col=”blue”)

legend(1,6,legend=c(“A”,”B”),col=c(“red”,”blue”),lwd=1,box.col=”black”,cex=1)

t.test(A$extra,B$extra)

t.test(A$extra,B$extra,paired=T)

t.test(A$extra-B$extra,mu=0)

###Una variable de agrupación (también llamada variable de codificación, variable de grupo o simplemente variable) clasifica las observaciones dentro de los archivos de datos en categorías o grupos. Le dice al sistema informático (sea cual fuere) cómo el usuario ha clasificado los datos en grupos. Las variables de agrupación pueden ser categóricas, binarias o numéricas.

###Cuando se desea realizar un comando dentro del texto (en un contexto de formato Rmd) se utiliza así,por ejemplo se podría decir que la media del sueño extra es `r mean(sleep$extra)` y la cantidad de datos son `r length(sleep$extra)`

## ESTIMACIÓN DE LA POTENCIA DE UNA PRUEBA DE HIPÓTESIS (PROBABILIDAD BETA DE COMETER ERROR TIPO II)

library(pwr) ###”pwr” es una base de datos nativa de R

delta=3 ###Nivel de Resolución de la prueba. Para un valor beta (probabilidad de cometer error tipo II) establecido el nivel de resolución es la distancia mínima que se desea que la prueba sea capaz de detectar, es decir, que si existe una distancia entre los promedios tal que la prueba muy probablemente rechace la hipótesis nula Ho. Para el cálculo manual de la probabilidad beta véase el complemento de este documento (FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE I, TEORÍA ESTADÍSTICA)

s=10.2 ###Desviación estándar muestral

(d=delta/s) #Tamano del efecto.

pwr.t.test(n=NULL,d=d,power =0.9,type=”one.sample”)

## ESTIMAR CON EL VALOR ÓPTIMO PARA EL NIVEL DE RESOLUCIÓN, PARTIENDO DE n=40 Y MANTENIENDO LA POTENCIA DE 0.9

(potencia=pwr.t.test(n=40,d=NULL,power =0.9,type=”one.sample”))

potencia$d*s  #Delta

## GRAFICAR LAS DIFERENTES COMBINACIONES DE TAMAÑO DE MUESTRA Y NIVEL DE RESOLUCIÓN PARA UNA POTENCIA DE LA PRUEBA FIJA

s=10.2

deltas=seq(2,6,length=30)

n=numeric(30)

for(i in 1:30) {

  (d[i]=deltas[i]/s)

  w=pwr.t.test(n=NULL,d=d[i],power =0.9,type=”one.sample”)

  n[i]=w$n

}

plot(deltas,n,type=”l”)

## SUPÓNGASE QUE SE QUIERE PROBAR SI DOS GRUPOS PRESENTAN DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN LOS NIVELES PROMEDIO DE AMILASA, PARA LO CUAL SE CONSIDERA IMPORTANTE DETECTAR DIFERENCIAS DE 15 UNIDADES/ML O MÁS ENTRE LOS PROMEDIOS

s2p=290.9  ###Varianza ponderada de los dos grupos

(sp=sqrt(s2p)) ###Desviación estándar ponderada de los dos grupos

delta=15

(d=delta/sp)

pwr.t.test(n=NULL,d=d,power =0.9,type=”two.sample”)

GENERALIDADES DE LA TEORÍA DEL APRENDIZAJE ESTADÍSTICO

ISADORE NABI

VI. Referencias

Barrios, J. (19 de Julio de 2019). La matriz de confusión y sus métricas . Obtenido de Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Google Developers. (19 de Julio de 2021). Clasificación: Exactitud. Obtenido de https://developers.google.com/machine-learning/crash-course/classification/accuracy

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

StackExchange Data Science. (19 de Junio de 2016). Is GLM a statistical or machine learning model? Obtenido de https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (15 de Marzo de 2014). Supervised Learning, Unsupervised Learning, Regression. Obtenido de https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

Wikipedia. (10 de Julio de 2021). Precision and recall. Obtenido de Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

MODELO LOGIT O REGRESIÓN LOGÍSTICA

ISADORE NABI

Como se señala en (Aldrich & Nelson, 1984, págs. 30-31), la inferencia estadística comienza por asumir que el modelo que se va a estimar y utilizar para hacer inferencias está correctamente especificado. La presunción, i.e., el supuesto de partida, es que la teoría estadística-matemática correspondiente a tal o cual modelo estadístico es la que justifica el uso del mismo. Sin embargo, a lo planteado por los autores hay que agregar que es aún más importante que las propiedades reales del fenómeno a estudiar (establecidas por el marco científico mediante el cual se estudia) deben corresponderse en una magnitud mínima necesaria y suficiente con las propiedades matemáticas de tal o cual modelo estadístico. Los autores señalan que es bastante fácil demostrar que la especificación incorrecta del modelo tiene implicaciones realmente sustanciales, ya que todas las propiedades estadísticas de las estimaciones pueden destruirse. Para decirlo sin rodeos, la especificación incorrecta del modelo conduce a respuestas incorrectas.

Los autores también elaboran una maravilla gnoseológica en su argumentación, relativa a la justificación del difundido uso del supuesto de linealidad, estableciendo una versión modificada de la navaja de Occam, una que no implica reduccionismo filosófico, como sí lo suele ser la que utilizan, por ejemplo, los bayesianos subjetivos en los modelos parsimoniosos (y fue en ese sentido en el que la criticó también Albert Einstein):

“¿Por qué es tan popular la especificación lineal? Hay dos razones básicas (y relacionadas). En la práctica, los modelos lineales son matemáticamente simples, por lo que los estadísticos han podido aprender mucho sobre ellos, y se han escrito programas de computadora para hacer la estimación. Sobre bases teóricas, la simplicidad conduce a su adopción, justificada por una versión de la navaja de Occam: en ausencia de una guía teórica en sentido contrario, comience asumiendo el caso más simple. Así, la Navaja de Occam, por implicación, diría: Con alguna orientación teórica en sentido contrario, no asuma el caso más simple.” (Aldrich & Nelson, 1984, pág. 31).

La investigación completa se facilita en el siguiente documento:

SOBRE LA CREACIÓN Y DESTRUCCIÓN DE VALOR EN LOS SISTEMAS DE ECONOMÍA POLÍTICA CAPITALISTA EN PARTICULAR Y EN LOS SISTEMAS ECONÓMICOS EN GENERAL (BORRADOR)

ISADORE NABI

REFERENCIAS

Alan. (25 de Julio de 2011). ENGLISH LENGUAGE & USAGE. Obtenido de Stack Exchange: https://english.stackexchange.com/questions/35508/difference-between-partly-and-partially#:~:text=Use%20partly%20when%20the%20%22in,it’s%20also%20%22partly%20closed%22.

Andrews, D. W. (1991). An Empirical Process Central Limit Theorem for Dependent Non-identically Distributed Random Variables . Journal of Multivariate Analysis, 187-203.

Berk, K. (1973). A CENTRAL LIMIT THEOREM FOR m-DEPENDENT RANDOM VARIABLES WITH UNBOUNDED m. The Annals of Probability, 1(2), 352-354.

Borisov, E. F., & Zhamin, V. A. (2009). Diccionario de Economía Política. (L. H. Juárez, Ed.) Nueva Guatemala de la Asunción, Guatemala, Guatemala: Tratados y Manuales Grijalbo.

Cockshott, P., & Cottrell, A. (2005). Robust correlations between prices and labor values. Cambridge Journal of Economics, 309-316.

Cockshott, P., Cottrell, A., & Valle Baeza, A. (2014). The Empirics of the Labour Theory of Value: Reply to Nitzan and Bichler. Investigación Económica, 115-134.

Cockshott, P., Cottrell, A., & Zachariah, D. (29 de Marzo de 2019). Against the Kliman theory. Recuperado el 22 de Marzo de 2021, de Paul Cockshott: http://paulcockshott.co.uk/publication-archive/Talks/politicaleconomy/Against%20the%20Kliman%20price%20theory.pdf

Dedecker, J., & Prieur, C. (2007). An empirical central limit theorem for dependent sequences. Stochastic Processes and their Applications, 117, 121-142.

Díaz, E., & Osuna, R. (2007). Indeterminacy in price–value correlation measures. Empirical Economics, 389-399.

Emmanuel, A. (1972). El Intercambio Desigual. Ensayo sobre los antagonismos en las relaciones económicas internacionales. México, D.F.: Sigloveintiuno editores, s.a.

Farjoun, E., & Marchover, M. (1983). Laws of Chaos. A Probabilistic Approach to Political Economy. Londres: Verso Editions and NLB.

fast.ai. (3 de Diciembre de 2017). How to calculate Weighted Mean Absolute Error (WMAE)? Obtenido de Forums: https://forums.fast.ai/t/how-to-calculate-weighted-mean-absolute-error-wmae/8575

Flaschel, P., & Semmler, W. (1985). The Dynamic Equalization of Profit Rates for Input-Output Models with Fixed Capital. En Varios, & W. Semmler (Ed.), Competition, Instability, and Nonlinear Cycles (págs. 1-34). New York: Springer-Verlag.

Flores Morador, F. (2013). Marx and the Moral Depreciation of Technology: Labor Value as Information. Social Science Research Network Electronic Journal, 1-16. Obtenido de https://internt.ht.lu.se/media/documents/project-778/Marx_and_the_moral_depreciation_of_technology.pdf

Fröhlich, N. (2012). Labour values, prices of production and the missing equalisation tendency of profit rates: evidence from the German economy. Cambridge Journal of Economics, 37(5), 1107-1126.

Glick, M., & Ehrbar, H. (1988). Profit Rate Equalization in the U.S. and Europe: An Econometric Investigation. European Journal of Political Economy, 179-201.

Gloria-Palermo, S. (2010). Introducing Formalism in Economics: The Growth Model of John von Neumann. Panoeconomicus, 153-172.

Godwin, H., & Zaremba, S. (1961). A Central Limit Theorem for Partly Dependent Variables. The Annals of Mathematical Statistics, 32(3), 677-686.

Guerrero, D. (Octubre-diciembre de 1997). UN MARX IMPOSIBLE: EL MARXISMO SIN TEORÍA LABORAL DEL VALOR. 57(222), 105-143.

Investopedia. (23 de Agosto de 2020). The Difference Between Standard Deviation and Average Deviation. Obtenido de Advanced Technical Analysis Concepts : https://www.investopedia.com/ask/answers/021215/what-difference-between-standard-deviation-and-average-deviation.asp

Kliman, A. (2002). The law of value and laws of statistics: sectoral values and prices in the US economy, 1977-97. Cambridge Journal of Economics, 299-311.

Kliman, A. (2005). Reply to Cockshott and Cottrell. Cambridge Journal of Economics, 317-323.

Kliman, A. (2014). What is spurious correlation? A reply to Díaz and Osuna. Journal of Post Keynesian Economics, 21(2), 345-356.

KO, M.-H., RYU, D.-H., KIM, T.-S., & CHOI, Y.-K. (2007). A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LNQD RANDOM VARIABLES AND ITS APPLICATION. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 37(1), 259-268.

Kuhn, T. (2011). La Estructura de las Revoluciones Científicas. México, D.F.: Fondo de Cultura Económica.

Kuroki, R. (1985). The Equalizartion of the Rate of Profit Reconsidered. En W. Semmler, Competition, Instability, and Nonlinear Cycles (págs. 35-50). New York: Springer-Velag.

Landau, L. D., & Lifshitz, E. M. (1994). Curso de Física Teórica. Mecánica (Segunda edición corregida ed.). (E. L. Vázquez, Trad.) Barcelona: Reverté, S.A.

Leontief, W. (1986). Input-Output Economics. Oxford, United States: Oxford University Press.

Levins, R. (Diciembre de 1993). A Response to Orzack and Sober: Formal Analysis and the Fluidity of Science. The Quarterly Review of Biology, 68(4), 547-55.

LI, X.-p. (2015). A Central Limit Theorem for m-dependent Random Variables under Sublinear Expectations. Acta Mathematicae Applicatae Sinica, 31(2), 435-444. doi:10.1007/s10255-015-0477-1

Marquetti, A., & Foley, D. (25 de Marzo de 2021). Extended Penn World Tables. Obtenido de Extended Penn World Tables: Economic Growth Data assembled from the Penn World Tables and other sources : https://sites.google.com/a/newschool.edu/duncan-foley-homepage/home/EPWT

Marx, K. H. (1989). Contribución a la Crítica de la Economía Política. (M. Kuznetsov, Trad.) Moscú: Editorial Progreso.

Marx, K. H. (2010). El Capital (Vol. I). México, D.F.: Fondo de Cultura Económica.

Mindrila, D., & Balentyne, P. (2 de Febrero de 2021). Scatterplots and Correlation. Obtenido de University of West Georgia: https://www.westga.edu/academics/research/vrc/assets/docs/scatterplots_and_correlation_notes.pdf

Mora Osejo, L. (1 de Enero de 1992). Reseñas y Comentarios. John von Neumann and Modern Economics. Goodwin, Dore, Chakavarty. Cuadernos de Economía, 12(17), 215-221. Obtenido de https://revistas.unal.edu.co/index.php/ceconomia/article/view/19349/20301

Moseley, F. (2015). Money and Totality. Leiden, South Holland, Netherlands: BRILL.

Nabi, I. (2020). SOBRE LA LEY DE LA TENDENCIA DECRECIENTE DE LA TASA MEDIA DE GANANCIA. Raíces Unitarias y No Estacionariedad de las Series de Tiempo. Documento Inédito. Obtenido de https://marxistphilosophyofscience.com/wp-content/uploads/2020/12/analisis-del-uso-de-la-prueba-de-hipotesis-en-el-contexto-de-la-especificacion-optima-de-un-modelo-de-regresion-isadore-nabi-2.pdf

Nabi, I. (2021). Lecciones de Gnoseología Marxiana I. Documento Inédito. Obtenido de https://marxianstatistics.com/2021/04/09/lecciones-de-gnoseologia-marxiana-i-lessons-of-marxian-gnoseology-i/

NABI, I. (1 de Abril de 2021). SOBRE LA METODOLOGÍA DEL U.S. BUREAU OF ECONOMIC ANALYSIS PARA LA REDEFINICIÓN Y REASIGNACIÓN DE PRODUCTOS EN LA MATRIZ INSUMO-PRODUCTO DE ESTADOS UNIDOS. Obtenido de ECONOMÍA POLÍTICA: https://marxianstatistics.com/2021/04/01/sobre-la-metodologia-del-u-s-bureau-of-economic-analysis-para-la-redefinicion-y-reasignacion-de-productos-en-la-matriz-insumo-producto-de-estados-unidos/

NABI, I., & B.A., A. (1 de Abril de 2021). UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019. Obtenido de EL BLOG DE ISADORE NABI: https://marxianstatistics.com/2021/04/01/una-metodologia-empirica-para-la-determinacion-de-la-magnitud-de-las-interrelaciones-sectoriales-dentro-de-la-matriz-insumo-producto-desde-los-cuadros-de-oferta-utilizacion-para-el-caso-de-estados-uni/

OECD. (25 de Septiembre de 2005). SCRAPPING. Obtenido de GLOSSARY OF STATISTICAL TERMS: https://stats.oecd.org/glossary/detail.asp?ID=2395

Parzen, E. (1957). A Central Limit Theorem for Multilinear Stochastic Processes. The Annals of Mathematical Statistics, 28(1), 252-256.

Pasinetti, L. (1984). Lecciones Sobre Teoría de la Producción. (L. Tormo, Trad.) México, D.F.: Fondo de Cultura Económica.

Real Academia Española. (18 de 03 de 2021). Diccionario de la lengua española. Obtenido de Edición del Tricentenario | Actualización 2020: https://dle.rae.es/transitar?m=form

Real Academia Española. (23 de Marzo de 2021). Diccionario de la lengua española. Obtenido de Edición Tricentenario | Actualización 2020: https://dle.rae.es/ecualizar?m=form

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

Sánchez, C. (Diciembre de 2013). Inconsistencia de la teoría neoclásica: aplicación del análisis dimensional a la economía. ECONOMÍA HOY, 4-6. Obtenido de https://www.uca.edu.sv/economia/wp-content/uploads/012-ECONOMIA-HOY-A-DIC2013.pdf

Sánchez, C., & Ferràndez, M. N. (Octubre-diciembre de 2010). Valores, precios de producción y precios de mercado a partir de los datos de la economía española. Investigación Económica, 87-118. Obtenido de https://www.jstor.org/stable/42779601?seq=1

Sánchez, C., & Montibeler, E. E. (2015). La teoría del valor trabajo y los precios en China. Economia e Sociedade, 329-354.

StackExchange. (12 de Enero de 2014). Mean absolute deviation vs. standard deviation. Obtenido de Cross Validated: https://stats.stackexchange.com/questions/81986/mean-absolute-deviation-vs-standard-deviation

Steedman, I., & Tomkins, J. (1998). On measuring the deviation of prices from values. Cambridge Journal of Economics, 379-385.

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Domestic Supply of Commodities by Industries (Millions of dollars). Obtenido de Input-Output Accounts Data | Data Files. Supply Tables – Domestic supply of commodities by industry ● 1997-2019: 15 Industries iTable, 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=52&step=102&isuri=1&table_list=3&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Domestic Supply of Commodities by Industries (Millions of dollars). Obtenido de Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Make Tables/After Redefinitions – Production of commodities by industry after redefinition of secondary production ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=5&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Use of Commodities by Industries. Obtenido de Input-Output Accounts Data | Data Files. Use Tables – Use of commodities by industry ● 1997-2019: 15 Industries iTable, 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=52&step=102&isuri=1&table_list=4&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Use of Commodities by Industries. Obtenido de Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Use Tables/After Redefinitions/Producer Value – Use of commodities by industry after reallocation of inputs ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=6&aggregation=sum

Valle Baeza, A. (1978). Valor y Precios de Producción. Investigación Económica, 169-203.

Walras, L. (1954). Elements of Pure Economics or The Theory of Social Wealth. (W. Jaffé, Trad.) Homewood, Ilinois, Estados Unidos: Richard D. Irwin, Inc.

Wikipedia. (25 de Enero de 2021). Trabajo (física). Obtenido de Magnitudes termodinámicas: https://es.wikipedia.org/wiki/Trabajo_(f%C3%ADsica)

Wikipedia. (17 de Marzo de 2021). Work (physics). Obtenido de Energy (physics): https://en.wikipedia.org/wiki/Work_(physics)

Wooldridge, J. M. (2010). Introducción a la Econometría. Un Enfoque Moderno (Cuarta ed.). México, D.F.: Cengage Learning.

Zachariah, D. (Junio de 2006). Labour value and equalisation of profit rates: a multi-country study. Indian Development Review, 4, 1-20.

LECCIONES DE GNOSEOLOGÍA MARXIANA I (LESSONS ON MARXIAN GNOSEOLOGY I)

isaDORE NABI

xiii. REFERENCIAS (references)

Bayes, T. (23 de Diciembre de 1763). An Essay towards solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London, 370-418.

Bernoulli, J. (2006). The Art of Conjecturing (Together to a Friend on Sets in Court Tennis). Maryland: John Hopkins University Press.

Crupi, V. (28 de Enero de 2020). Confirmation. Obtenido de Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/confirmation/

DeGroot, M., & Schervish, M. (2012). Probability and Statistics. Boston: Pearson Education.

Dussel, E. (1991). 2. El método dialéctico de lo abstracto a lo concreto (20, 41-33, 14; 21,3-31,38) :(Cuaderno M. desde la página 14 del manuscrito, terminado a mediados deseptiembre de 1857). En E. Dussel, La producción teórica de Marx: un comentario a los grundrisse (págs. 48-63). México D.F.: Siglo XXI Editores. Obtenido de http://biblioteca.clacso.edu.ar/clacso/otros/20120424094653/3cap2.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Eremenko, A. (30 de Abril de 2020). Stack Exchange, History of Sciences and Mathematics. Obtenido de What was Kolmogorov’s point of view in the philosophy of mathematics?: https://hsm.stackexchange.com/questions/11730/what-was-kolmogorov-s-point-of-view-in-the-philosophy-of-mathematics

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Filosofía en español. (9 de Febrero de 2018). Diccionario filosófico abreviado. Obtenido de URSS: http://www.filosofia.org/urss/dfa1959.htm

Fröhlich, N. (2012). Labour values, prices of production and the missing equalisation tendency of profit rates: evidence from the German economy. Cambridge Journal of Economics, 37(5), 1107-1126.

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación del Español Urgente. (23 de Marzo de 2021). Formación de gentilicios extranjeros. Obtenido de Lista de topónimos y gentilicios: https://www.wikilengua.org/index.php/Formaci%C3%B3n_de_gentilicios_extranjeros

Fundación del Español Urgente. (23 de Marzo de 2021). -ista (sufijo). Obtenido de Sufijos: https://www.wikilengua.org/index.php/-ista_(sufijo)

Gigerenzer, G. (2004). Mindless Statistics. The Journal of Socio-Economics, 587-606.

Greene, W. H. (2012). Econometric Analysis (International Edition). Essex: Pearson Education Limited.

Guerrero Jiménez, D. (2018). TRABAJO IMPRODUCTIVO, CRECIMIENTO Y TERCIARIZACIÓN (30 AÑOS DESPUÉS DE MARX Y KEYNES). International Journal of Political Economy, 1-16. Obtenido de https://www.researchgate.net/publication/327189598_Diego_Guerrero_TRABAJO_IMPRODUCTIVO_CRECIMIENTO_Y_TERCIARIZACION_30_ANOS_DESPUES_DE_MARX_Y_KEYNES

Haldane, J. B. (1945). Science and Everyday Life. Allahabad,: Kitab Mahal Publishers.

Hegel, F. (1968). Ciencia de la Lógica. Buenos Aires: Solar / Hachette.

Johnsen, J. (17 de Enero de 2019). What is the difference between positivism and empiricism? Obtenido de Quora: https://www.quora.com/What-is-the-difference-between-positivism-and-empiricism

Kohan, N., & Brito, P. (1 de Febrero de 2009). Marxismo para principiantes. Obtenido de nodo50: https://info.nodo50.org/Diccionario-basico-de-categorias.html

Kojevnikov, A. (19 de Junio de 2019). PROBABILITY, MARXISM, AND QUANTUM ENSEMBLES. Obtenido de The University of British Columbia: https://history.ubc.ca/wp-content/uploads/sites/23/2019/06/probability2012.pdf

Kolmogórov, A. (1956). Foundations of the Theory of Probability (Segunda Edición ed.). New York: Chelsea Publishing Company.

Laplace, P.-S. (2015). Ensayo Filosófico Sobre Probabilidades. Ciudad de México: Biblioteca Digital del Instituto Latinoamericano de Comunicación Educativa. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lenin, V. (1974). Cuadernos Filosóficos. Madrid: Editorial Ayuso.

Loughborough University. (21 de Febrero de 2008). Total Probability and Bayes’ Theorem. Obtenido de The theorem of total probability: https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook35/35_4_total_prob_bayes_thm.pdf

Maibaum, G. (1988). Teoría de Probabilidades y Estadística Matemática. (M. Á. Pérez, Trad.) La Habana, Cuba: Editorial Pueblo y Educación.

Marx, K. (1894). Capital. A Critique of Political Economy (Vol. III). New York: International Publishers.

Marx, K. (1989). Contribución a la Crítica de la Economía Política. Moscú: Editorial Progreso.

Marx, K. (2007). Elementos Fundamentales para la Crítica de la Economía Política (Grundrisse) 1857-1858 (Vol. I). (J. Aricó, M. Murmis, P. Scaron, Edits., & P. Scaron, Trad.) México, D.F.: Siglo XXI Editores.

Marx, K. (2010). El Capital (Vol. I). México, D.F.: Fondo de Cultura Económica.

Marx, K., & Engels, F. (1987). Karl Marx and Friedrich Engels Collected Works (Vol. XLII). Moscú: Progress Publishers.

Mittelhammer, R. (2013). Mathematical Statistics for Economics and Business (Segunda ed.). New York: Springer.

Nabi, I. (2020). Algunas Reflexiones Sobre la Distribución Binomial Negativa II (Un Análisis Teórico y Aplicado). Documento Inédito. Obtenido de https://marxistphilosophyofscience.com/wp-content/uploads/2020/12/algunas-reflexiones-sobre-la-distribucion-binomial-negativa-ii-isadore-nabi-2.pdf

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Nabi, I., & B.A., A. (1 de Abril de 2021). UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/04/01/una-metodologia-empirica-para-la-determinacion-de-la-magnitud-de-las-interrelaciones-sectoriales-dentro-de-la-matriz-insumo-producto-desde-los-cuadros-de-oferta-utilizacion-para-el-caso-de-estados-uni/

North Carolina State University. (27 de Septiembre de 2020). People – Department of History . Obtenido de Dr Edith D Sylla: https://history.ncsu.edu/people/faculty_staff/edsssl

Perezgonzalez, J. (3 de Marzo de 2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. (L. Roberts, Ed.) Frontiers in Psychology, 6(223), 1-11. doi:10.3389/fpsyg.2015.00223

Poisson, S.-D. (2013). Researches into the Probabilities of Judgments in Criminal and Civil Cases. (O. Sheynin, Ed.) Berlin: arXiv. Obtenido de https://arxiv.org/abs/1902.02782

Radboud Univeristy. (11 de Febrero de 2011). Faculty of Philosophy, Theology and Religious Studies. Obtenido de Center for the History of Philosophy and Science. Edith Dudley Sylla: https://www.ru.nl/ptrs/chps/about-us/former-members/vm/sylla/

Rosental, M. (1961). Los problemas de la dialéctica en “EL CAPITAL” de Marx. Montevideo: Ediciones Pueblos Unidos.

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Rosental, M., & Iudin, P. (1959). Diccionario filosófico abreviado. Montevideo: Ediciones Pueblos Unidos.

Russell, K. (29 de Enero de 2014). University of Manitoba. Obtenido de Hypothesis testing: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

StackExchange Philosophy. (15 de Junio de 2015). How empiricism and positivism is distinguished? What’s their differences? Obtenido de Philosophy: https://philosophy.stackexchange.com/questions/24937/how-empiricism-and-positivism-is-distinguished-whats-their-differences

TECH2 NEWS STAFF. (28 de Noviembre de 2019). SCIENTISTS MAY HAVE DISCOVERED A FIFTH FUNDAMENTAL ‘FORCE OF NATURE,’ THEY’RE CALLING IT X17. Obtenido de TECH2: https://www.firstpost.com/tech/science/scientists-may-have-discovered-a-fifth-fundamental-force-of-nature-theyre-calling-it-x17-7710261.html

Wikipedia. (27 de Septiembre de 2020). Population Genetics. Obtenido de J. B. S. Haldane: https://es.wikipedia.org/wiki/John_Burdon_Sanderson_Haldane

Wikipedia. (23 de Septiembre de 2020). Statistics. Obtenido de Inverse Probability: https://en.wikipedia.org/wiki/Inverse_probability

Wikipedia. (13 de Marzo de 2021). Relación de incertidumbre. Obtenido de Mecánica cuántica: https://es.wikipedia.org/wiki/Relaci%C3%B3n_de_indeterminaci%C3%B3n_de_Heisenberg

Williamson, J. (2010). In Defence of Objective Bayesianism. Oxford: Oxford University Press.

ALGUNAS REFLEXIONES SOBRE LA DISTRIBUCIÓN BINOMIAL NEGATIVA II COMO INSTRUMENTO DE MEDICIÓN

ISADORE NABI

Análisis Estadístico Capital Capitalism Capitalismo Crisis Distribución Economía Economía Política Engels Estados Unidos Estadística Estadística Descriptiva Estadística Inferencial Estadística Matemática Filosofía Función Historia Historia Universal History Imperialismo Inflación Lógica Lógica Dialéctica Marx Marxism Marxismo Marxist Theory Matemáticas Materialismo Dialéctico Materialismo Histórico Political Economy Política Política Económica Precios Probabilidad Probabilidades Regresión Regresión Lineal Sistema Económico Statistics Teoría Teoría Estadística Teoría Marxiana Teoría Marxista Trabajo