SOBRE LA CREACIÓN Y DESTRUCCIÓN DE VALOR EN LOS SISTEMAS DE ECONOMÍA POLÍTICA CAPITALISTA EN PARTICULAR Y EN LOS SISTEMAS ECONÓMICOS EN GENERAL (BORRADOR)

ISADORE NABI

REFERENCIAS

Alan. (25 de Julio de 2011). ENGLISH LENGUAGE & USAGE. Obtenido de Stack Exchange: https://english.stackexchange.com/questions/35508/difference-between-partly-and-partially#:~:text=Use%20partly%20when%20the%20%22in,it’s%20also%20%22partly%20closed%22.

Andrews, D. W. (1991). An Empirical Process Central Limit Theorem for Dependent Non-identically Distributed Random Variables . Journal of Multivariate Analysis, 187-203.

Berk, K. (1973). A CENTRAL LIMIT THEOREM FOR m-DEPENDENT RANDOM VARIABLES WITH UNBOUNDED m. The Annals of Probability, 1(2), 352-354.

Borisov, E. F., & Zhamin, V. A. (2009). Diccionario de Economía Política. (L. H. Juárez, Ed.) Nueva Guatemala de la Asunción, Guatemala, Guatemala: Tratados y Manuales Grijalbo.

Cockshott, P., & Cottrell, A. (2005). Robust correlations between prices and labor values. Cambridge Journal of Economics, 309-316.

Cockshott, P., Cottrell, A., & Valle Baeza, A. (2014). The Empirics of the Labour Theory of Value: Reply to Nitzan and Bichler. Investigación Económica, 115-134.

Cockshott, P., Cottrell, A., & Zachariah, D. (29 de Marzo de 2019). Against the Kliman theory. Recuperado el 22 de Marzo de 2021, de Paul Cockshott: http://paulcockshott.co.uk/publication-archive/Talks/politicaleconomy/Against%20the%20Kliman%20price%20theory.pdf

Dedecker, J., & Prieur, C. (2007). An empirical central limit theorem for dependent sequences. Stochastic Processes and their Applications, 117, 121-142.

Díaz, E., & Osuna, R. (2007). Indeterminacy in price–value correlation measures. Empirical Economics, 389-399.

Emmanuel, A. (1972). El Intercambio Desigual. Ensayo sobre los antagonismos en las relaciones económicas internacionales. México, D.F.: Sigloveintiuno editores, s.a.

Farjoun, E., & Marchover, M. (1983). Laws of Chaos. A Probabilistic Approach to Political Economy. Londres: Verso Editions and NLB.

fast.ai. (3 de Diciembre de 2017). How to calculate Weighted Mean Absolute Error (WMAE)? Obtenido de Forums: https://forums.fast.ai/t/how-to-calculate-weighted-mean-absolute-error-wmae/8575

Flaschel, P., & Semmler, W. (1985). The Dynamic Equalization of Profit Rates for Input-Output Models with Fixed Capital. En Varios, & W. Semmler (Ed.), Competition, Instability, and Nonlinear Cycles (págs. 1-34). New York: Springer-Verlag.

Flores Morador, F. (2013). Marx and the Moral Depreciation of Technology: Labor Value as Information. Social Science Research Network Electronic Journal, 1-16. Obtenido de https://internt.ht.lu.se/media/documents/project-778/Marx_and_the_moral_depreciation_of_technology.pdf

Fröhlich, N. (2012). Labour values, prices of production and the missing equalisation tendency of profit rates: evidence from the German economy. Cambridge Journal of Economics, 37(5), 1107-1126.

Glick, M., & Ehrbar, H. (1988). Profit Rate Equalization in the U.S. and Europe: An Econometric Investigation. European Journal of Political Economy, 179-201.

Gloria-Palermo, S. (2010). Introducing Formalism in Economics: The Growth Model of John von Neumann. Panoeconomicus, 153-172.

Godwin, H., & Zaremba, S. (1961). A Central Limit Theorem for Partly Dependent Variables. The Annals of Mathematical Statistics, 32(3), 677-686.

Guerrero, D. (Octubre-diciembre de 1997). UN MARX IMPOSIBLE: EL MARXISMO SIN TEORÍA LABORAL DEL VALOR. 57(222), 105-143.

Investopedia. (23 de Agosto de 2020). The Difference Between Standard Deviation and Average Deviation. Obtenido de Advanced Technical Analysis Concepts : https://www.investopedia.com/ask/answers/021215/what-difference-between-standard-deviation-and-average-deviation.asp

Kliman, A. (2002). The law of value and laws of statistics: sectoral values and prices in the US economy, 1977-97. Cambridge Journal of Economics, 299-311.

Kliman, A. (2005). Reply to Cockshott and Cottrell. Cambridge Journal of Economics, 317-323.

Kliman, A. (2014). What is spurious correlation? A reply to Díaz and Osuna. Journal of Post Keynesian Economics, 21(2), 345-356.

KO, M.-H., RYU, D.-H., KIM, T.-S., & CHOI, Y.-K. (2007). A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LNQD RANDOM VARIABLES AND ITS APPLICATION. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 37(1), 259-268.

Kuhn, T. (2011). La Estructura de las Revoluciones Científicas. México, D.F.: Fondo de Cultura Económica.

Kuroki, R. (1985). The Equalizartion of the Rate of Profit Reconsidered. En W. Semmler, Competition, Instability, and Nonlinear Cycles (págs. 35-50). New York: Springer-Velag.

Landau, L. D., & Lifshitz, E. M. (1994). Curso de Física Teórica. Mecánica (Segunda edición corregida ed.). (E. L. Vázquez, Trad.) Barcelona: Reverté, S.A.

Leontief, W. (1986). Input-Output Economics. Oxford, United States: Oxford University Press.

Levins, R. (Diciembre de 1993). A Response to Orzack and Sober: Formal Analysis and the Fluidity of Science. The Quarterly Review of Biology, 68(4), 547-55.

LI, X.-p. (2015). A Central Limit Theorem for m-dependent Random Variables under Sublinear Expectations. Acta Mathematicae Applicatae Sinica, 31(2), 435-444. doi:10.1007/s10255-015-0477-1

Marquetti, A., & Foley, D. (25 de Marzo de 2021). Extended Penn World Tables. Obtenido de Extended Penn World Tables: Economic Growth Data assembled from the Penn World Tables and other sources : https://sites.google.com/a/newschool.edu/duncan-foley-homepage/home/EPWT

Marx, K. H. (1989). Contribución a la Crítica de la Economía Política. (M. Kuznetsov, Trad.) Moscú: Editorial Progreso.

Marx, K. H. (2010). El Capital (Vol. I). México, D.F.: Fondo de Cultura Económica.

Mindrila, D., & Balentyne, P. (2 de Febrero de 2021). Scatterplots and Correlation. Obtenido de University of West Georgia: https://www.westga.edu/academics/research/vrc/assets/docs/scatterplots_and_correlation_notes.pdf

Mora Osejo, L. (1 de Enero de 1992). Reseñas y Comentarios. John von Neumann and Modern Economics. Goodwin, Dore, Chakavarty. Cuadernos de Economía, 12(17), 215-221. Obtenido de https://revistas.unal.edu.co/index.php/ceconomia/article/view/19349/20301

Moseley, F. (2015). Money and Totality. Leiden, South Holland, Netherlands: BRILL.

Nabi, I. (2020). SOBRE LA LEY DE LA TENDENCIA DECRECIENTE DE LA TASA MEDIA DE GANANCIA. Raíces Unitarias y No Estacionariedad de las Series de Tiempo. Documento Inédito. Obtenido de https://marxistphilosophyofscience.com/wp-content/uploads/2020/12/analisis-del-uso-de-la-prueba-de-hipotesis-en-el-contexto-de-la-especificacion-optima-de-un-modelo-de-regresion-isadore-nabi-2.pdf

Nabi, I. (2021). Lecciones de Gnoseología Marxiana I. Documento Inédito. Obtenido de https://marxianstatistics.com/2021/04/09/lecciones-de-gnoseologia-marxiana-i-lessons-of-marxian-gnoseology-i/

NABI, I. (1 de Abril de 2021). SOBRE LA METODOLOGÍA DEL U.S. BUREAU OF ECONOMIC ANALYSIS PARA LA REDEFINICIÓN Y REASIGNACIÓN DE PRODUCTOS EN LA MATRIZ INSUMO-PRODUCTO DE ESTADOS UNIDOS. Obtenido de ECONOMÍA POLÍTICA: https://marxianstatistics.com/2021/04/01/sobre-la-metodologia-del-u-s-bureau-of-economic-analysis-para-la-redefinicion-y-reasignacion-de-productos-en-la-matriz-insumo-producto-de-estados-unidos/

NABI, I., & B.A., A. (1 de Abril de 2021). UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019. Obtenido de EL BLOG DE ISADORE NABI: https://marxianstatistics.com/2021/04/01/una-metodologia-empirica-para-la-determinacion-de-la-magnitud-de-las-interrelaciones-sectoriales-dentro-de-la-matriz-insumo-producto-desde-los-cuadros-de-oferta-utilizacion-para-el-caso-de-estados-uni/

OECD. (25 de Septiembre de 2005). SCRAPPING. Obtenido de GLOSSARY OF STATISTICAL TERMS: https://stats.oecd.org/glossary/detail.asp?ID=2395

Parzen, E. (1957). A Central Limit Theorem for Multilinear Stochastic Processes. The Annals of Mathematical Statistics, 28(1), 252-256.

Pasinetti, L. (1984). Lecciones Sobre Teoría de la Producción. (L. Tormo, Trad.) México, D.F.: Fondo de Cultura Económica.

Real Academia Española. (18 de 03 de 2021). Diccionario de la lengua española. Obtenido de Edición del Tricentenario | Actualización 2020: https://dle.rae.es/transitar?m=form

Real Academia Española. (23 de Marzo de 2021). Diccionario de la lengua española. Obtenido de Edición Tricentenario | Actualización 2020: https://dle.rae.es/ecualizar?m=form

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

Sánchez, C. (Diciembre de 2013). Inconsistencia de la teoría neoclásica: aplicación del análisis dimensional a la economía. ECONOMÍA HOY, 4-6. Obtenido de https://www.uca.edu.sv/economia/wp-content/uploads/012-ECONOMIA-HOY-A-DIC2013.pdf

Sánchez, C., & Ferràndez, M. N. (Octubre-diciembre de 2010). Valores, precios de producción y precios de mercado a partir de los datos de la economía española. Investigación Económica, 87-118. Obtenido de https://www.jstor.org/stable/42779601?seq=1

Sánchez, C., & Montibeler, E. E. (2015). La teoría del valor trabajo y los precios en China. Economia e Sociedade, 329-354.

StackExchange. (12 de Enero de 2014). Mean absolute deviation vs. standard deviation. Obtenido de Cross Validated: https://stats.stackexchange.com/questions/81986/mean-absolute-deviation-vs-standard-deviation

Steedman, I., & Tomkins, J. (1998). On measuring the deviation of prices from values. Cambridge Journal of Economics, 379-385.

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Domestic Supply of Commodities by Industries (Millions of dollars). Obtenido de Input-Output Accounts Data | Data Files. Supply Tables – Domestic supply of commodities by industry ● 1997-2019: 15 Industries iTable, 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=52&step=102&isuri=1&table_list=3&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Domestic Supply of Commodities by Industries (Millions of dollars). Obtenido de Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Make Tables/After Redefinitions – Production of commodities by industry after redefinition of secondary production ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=5&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Use of Commodities by Industries. Obtenido de Input-Output Accounts Data | Data Files. Use Tables – Use of commodities by industry ● 1997-2019: 15 Industries iTable, 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=52&step=102&isuri=1&table_list=4&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Use of Commodities by Industries. Obtenido de Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Use Tables/After Redefinitions/Producer Value – Use of commodities by industry after reallocation of inputs ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=6&aggregation=sum

Valle Baeza, A. (1978). Valor y Precios de Producción. Investigación Económica, 169-203.

Walras, L. (1954). Elements of Pure Economics or The Theory of Social Wealth. (W. Jaffé, Trad.) Homewood, Ilinois, Estados Unidos: Richard D. Irwin, Inc.

Wikipedia. (25 de Enero de 2021). Trabajo (física). Obtenido de Magnitudes termodinámicas: https://es.wikipedia.org/wiki/Trabajo_(f%C3%ADsica)

Wikipedia. (17 de Marzo de 2021). Work (physics). Obtenido de Energy (physics): https://en.wikipedia.org/wiki/Work_(physics)

Wooldridge, J. M. (2010). Introducción a la Econometría. Un Enfoque Moderno (Cuarta ed.). México, D.F.: Cengage Learning.

Zachariah, D. (Junio de 2006). Labour value and equalisation of profit rates: a multi-country study. Indian Development Review, 4, 1-20.

SOBRE LA ESENCIA, EL CONTENIDO, LA FORMA, EL FENÓMENO Y LA APARIENCIA DE LOS PROCESOS DE LA REALIDAD

ISADORE NABI

REFERENCIAS

Einstein, A. (2005). The Foundation of the General Theory of Relativity. En A. Einstein, 100 Years of Gravity and Accelerated Frames. The Deepest lnsig hts of Einstein and Yang-Mills (págs. 65-119). Singapore: World Scientific Publishing Co. Pte. Ltd.

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Gass, I., Smith, P., & Wilson, R. (2008). Introducción a las Ciencias de la Tierra. Barcelona: Reverté, S.A.

Kilifarska, N. A., Bakhmutov, V. G., & Melnyk, G. V. (2020). The Hidden Link between Earth’s Magnetic Field and Climate. Radarweg, Amsterdam, Netherlands: Elsevier.

Lumen Physics. (10 de Abril de 2021). Fictitious Forces and Non-inertial Frames: The Coriolis Force. Obtenido de Uniform Circular Motion and Gravitation: https://courses.lumenlearning.com/physics/chapter/6-4-fictitious-forces-and-non-inertial-frames-the-coriolis-force/

Marx, K. (2007). Elementos Fundamentales para la Crítica de la Economía Política (Grundrisse) 1857-1858 (Vol. I). México, D.F.: Siglo XXI.

Nabi, I. (2020). Algunas Reflexiones Sobre la Distribución Binomial Negativa II (Un Análisis Teórico y Aplicado). Documento Inédito. Obtenido de https://marxistphilosophyofscience.com/wp-content/uploads/2020/12/algunas-reflexiones-sobre-la-distribucion-binomial-negativa-ii-isadore-nabi-2.pdf

Nabi, I. (2021). Lecciones de Gnoseología Marxiana I. Documento Inédito. Obtenido de https://marxianstatistics.com/2021/04/09/lecciones-de-gnoseologia-marxiana-i-lessons-of-marxian-gnoseology-i/

Nabi, I. (2 de Abril de 2021). Una Interpretación Multidisciplinaria de los Espacios Característicos, Vectores Característicos y Valores Característicos. Obtenido de El Blog de Isadore Nabi: https://marxistphilosophyofscience.com/wp-content/uploads/2021/04/una-interpretacion-multidisciplinaria-de-los-espacios-caracteristicos-vectores-caracteristicos-y-valores-caracteristicos-isadore-nabi-1.pdf

Real Academia Española. (5 de Julio de 2020). inherente. Recuperado el 5 de Julio de 2020, de Definición: https://dle.rae.es/inherente?m=form

Rosental, M. (1961). Los problemas de la dialéctica en “EL CAPITAL” de Marx. Montevideo: Ediciones Pueblos Unidos.

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

StackExchange. (24 de Abril de 2012). How fictitious are fictitious forces? Obtenido de Physics: https://physics.stackexchange.com/questions/24338/how-fictitious-are-fictitious-forces

StackExchange. (8 de Febrero de 2012). Why can’t we think of free fall as upside down rocket? Obtenido de Physics: https://physics.stackexchange.com/questions/20706/why-cant-we-think-of-free-fall-as-upside-down-rocket/20709#20709 Un Blog de Dibujos. (9 de Abril de 2021). Capas de la Tierra. Obtenido de Noches en vela: https://lonedain.wordpress.com/2012/02/22/ilustracion-educativa/capas-de-la-tierra/

LECCIONES DE GNOSEOLOGÍA MARXIANA I (LESSONS ON MARXIAN GNOSEOLOGY I)

isaDORE NABI

xiii. REFERENCIAS (references)

Bayes, T. (23 de Diciembre de 1763). An Essay towards solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London, 370-418.

Bernoulli, J. (2006). The Art of Conjecturing (Together to a Friend on Sets in Court Tennis). Maryland: John Hopkins University Press.

Crupi, V. (28 de Enero de 2020). Confirmation. Obtenido de Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/confirmation/

DeGroot, M., & Schervish, M. (2012). Probability and Statistics. Boston: Pearson Education.

Dussel, E. (1991). 2. El método dialéctico de lo abstracto a lo concreto (20, 41-33, 14; 21,3-31,38) :(Cuaderno M. desde la página 14 del manuscrito, terminado a mediados deseptiembre de 1857). En E. Dussel, La producción teórica de Marx: un comentario a los grundrisse (págs. 48-63). México D.F.: Siglo XXI Editores. Obtenido de http://biblioteca.clacso.edu.ar/clacso/otros/20120424094653/3cap2.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Eremenko, A. (30 de Abril de 2020). Stack Exchange, History of Sciences and Mathematics. Obtenido de What was Kolmogorov’s point of view in the philosophy of mathematics?: https://hsm.stackexchange.com/questions/11730/what-was-kolmogorov-s-point-of-view-in-the-philosophy-of-mathematics

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Filosofía en español. (9 de Febrero de 2018). Diccionario filosófico abreviado. Obtenido de URSS: http://www.filosofia.org/urss/dfa1959.htm

Fröhlich, N. (2012). Labour values, prices of production and the missing equalisation tendency of profit rates: evidence from the German economy. Cambridge Journal of Economics, 37(5), 1107-1126.

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación del Español Urgente. (23 de Marzo de 2021). Formación de gentilicios extranjeros. Obtenido de Lista de topónimos y gentilicios: https://www.wikilengua.org/index.php/Formaci%C3%B3n_de_gentilicios_extranjeros

Fundación del Español Urgente. (23 de Marzo de 2021). -ista (sufijo). Obtenido de Sufijos: https://www.wikilengua.org/index.php/-ista_(sufijo)

Gigerenzer, G. (2004). Mindless Statistics. The Journal of Socio-Economics, 587-606.

Greene, W. H. (2012). Econometric Analysis (International Edition). Essex: Pearson Education Limited.

Guerrero Jiménez, D. (2018). TRABAJO IMPRODUCTIVO, CRECIMIENTO Y TERCIARIZACIÓN (30 AÑOS DESPUÉS DE MARX Y KEYNES). International Journal of Political Economy, 1-16. Obtenido de https://www.researchgate.net/publication/327189598_Diego_Guerrero_TRABAJO_IMPRODUCTIVO_CRECIMIENTO_Y_TERCIARIZACION_30_ANOS_DESPUES_DE_MARX_Y_KEYNES

Haldane, J. B. (1945). Science and Everyday Life. Allahabad,: Kitab Mahal Publishers.

Hegel, F. (1968). Ciencia de la Lógica. Buenos Aires: Solar / Hachette.

Johnsen, J. (17 de Enero de 2019). What is the difference between positivism and empiricism? Obtenido de Quora: https://www.quora.com/What-is-the-difference-between-positivism-and-empiricism

Kohan, N., & Brito, P. (1 de Febrero de 2009). Marxismo para principiantes. Obtenido de nodo50: https://info.nodo50.org/Diccionario-basico-de-categorias.html

Kojevnikov, A. (19 de Junio de 2019). PROBABILITY, MARXISM, AND QUANTUM ENSEMBLES. Obtenido de The University of British Columbia: https://history.ubc.ca/wp-content/uploads/sites/23/2019/06/probability2012.pdf

Kolmogórov, A. (1956). Foundations of the Theory of Probability (Segunda Edición ed.). New York: Chelsea Publishing Company.

Laplace, P.-S. (2015). Ensayo Filosófico Sobre Probabilidades. Ciudad de México: Biblioteca Digital del Instituto Latinoamericano de Comunicación Educativa. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lenin, V. (1974). Cuadernos Filosóficos. Madrid: Editorial Ayuso.

Loughborough University. (21 de Febrero de 2008). Total Probability and Bayes’ Theorem. Obtenido de The theorem of total probability: https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook35/35_4_total_prob_bayes_thm.pdf

Maibaum, G. (1988). Teoría de Probabilidades y Estadística Matemática. (M. Á. Pérez, Trad.) La Habana, Cuba: Editorial Pueblo y Educación.

Marx, K. (1894). Capital. A Critique of Political Economy (Vol. III). New York: International Publishers.

Marx, K. (1989). Contribución a la Crítica de la Economía Política. Moscú: Editorial Progreso.

Marx, K. (2007). Elementos Fundamentales para la Crítica de la Economía Política (Grundrisse) 1857-1858 (Vol. I). (J. Aricó, M. Murmis, P. Scaron, Edits., & P. Scaron, Trad.) México, D.F.: Siglo XXI Editores.

Marx, K. (2010). El Capital (Vol. I). México, D.F.: Fondo de Cultura Económica.

Marx, K., & Engels, F. (1987). Karl Marx and Friedrich Engels Collected Works (Vol. XLII). Moscú: Progress Publishers.

Mittelhammer, R. (2013). Mathematical Statistics for Economics and Business (Segunda ed.). New York: Springer.

Nabi, I. (2020). Algunas Reflexiones Sobre la Distribución Binomial Negativa II (Un Análisis Teórico y Aplicado). Documento Inédito. Obtenido de https://marxistphilosophyofscience.com/wp-content/uploads/2020/12/algunas-reflexiones-sobre-la-distribucion-binomial-negativa-ii-isadore-nabi-2.pdf

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Nabi, I., & B.A., A. (1 de Abril de 2021). UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/04/01/una-metodologia-empirica-para-la-determinacion-de-la-magnitud-de-las-interrelaciones-sectoriales-dentro-de-la-matriz-insumo-producto-desde-los-cuadros-de-oferta-utilizacion-para-el-caso-de-estados-uni/

North Carolina State University. (27 de Septiembre de 2020). People – Department of History . Obtenido de Dr Edith D Sylla: https://history.ncsu.edu/people/faculty_staff/edsssl

Perezgonzalez, J. (3 de Marzo de 2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. (L. Roberts, Ed.) Frontiers in Psychology, 6(223), 1-11. doi:10.3389/fpsyg.2015.00223

Poisson, S.-D. (2013). Researches into the Probabilities of Judgments in Criminal and Civil Cases. (O. Sheynin, Ed.) Berlin: arXiv. Obtenido de https://arxiv.org/abs/1902.02782

Radboud Univeristy. (11 de Febrero de 2011). Faculty of Philosophy, Theology and Religious Studies. Obtenido de Center for the History of Philosophy and Science. Edith Dudley Sylla: https://www.ru.nl/ptrs/chps/about-us/former-members/vm/sylla/

Rosental, M. (1961). Los problemas de la dialéctica en “EL CAPITAL” de Marx. Montevideo: Ediciones Pueblos Unidos.

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Rosental, M., & Iudin, P. (1959). Diccionario filosófico abreviado. Montevideo: Ediciones Pueblos Unidos.

Russell, K. (29 de Enero de 2014). University of Manitoba. Obtenido de Hypothesis testing: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

StackExchange Philosophy. (15 de Junio de 2015). How empiricism and positivism is distinguished? What’s their differences? Obtenido de Philosophy: https://philosophy.stackexchange.com/questions/24937/how-empiricism-and-positivism-is-distinguished-whats-their-differences

TECH2 NEWS STAFF. (28 de Noviembre de 2019). SCIENTISTS MAY HAVE DISCOVERED A FIFTH FUNDAMENTAL ‘FORCE OF NATURE,’ THEY’RE CALLING IT X17. Obtenido de TECH2: https://www.firstpost.com/tech/science/scientists-may-have-discovered-a-fifth-fundamental-force-of-nature-theyre-calling-it-x17-7710261.html

Wikipedia. (27 de Septiembre de 2020). Population Genetics. Obtenido de J. B. S. Haldane: https://es.wikipedia.org/wiki/John_Burdon_Sanderson_Haldane

Wikipedia. (23 de Septiembre de 2020). Statistics. Obtenido de Inverse Probability: https://en.wikipedia.org/wiki/Inverse_probability

Wikipedia. (13 de Marzo de 2021). Relación de incertidumbre. Obtenido de Mecánica cuántica: https://es.wikipedia.org/wiki/Relaci%C3%B3n_de_indeterminaci%C3%B3n_de_Heisenberg

Williamson, J. (2010). In Defence of Objective Bayesianism. Oxford: Oxford University Press.

UNA APROXIMACIÓN EMPÍRICA A ALGUNAS LAS PROPIEDADES TEÓRICAS DE LOS CONJUNTOS CON R STUDIO

ISADORE NABI & a.b.a.

CONJUNTO A UTILIZAR

CÓDIGO EN R

conjunto <- c(1:10) #Puede ser cualquier conjunto

I. PRODUCTO CARTESIANO

Ejemplo de producto cartesiano para el caso de dos conjuntos de tres elementos cada uno

CÓDIGO EN R

length(conjunto)*length(conjunto)
prod_cart <- expand.grid(conjunto, conjunto)

ii. CONJUNTO POTENCIA (SIGMA ÁLGEBRA)

Ejemplo de conjunto potencia o sigma álgebra de un conjunto de tres elementos

CÓDIGO EN R

2^10
library(rje)
c_potencia <- powerSet(conjunto)

iii. PERMUTACIONES SIN REPETICIÓN

Fórmula general para permutar un conjunto sin repetir elementos
Ejemplo de cómo permutar las letras de la palabra “APPLE” sin que se repitan letras

CÓDIGO EN R

perm_sin_rep = function(n, x) {
factorial(n) / factorial(n-x)
}

cantidad_perm_sin_rep <- 0
for(i in 1:10){
temp <- perm_sin_rep(10, i)
cantidad_perm_sin_rep <- cantidad_perm_sin_rep + temp
}

library(gtools)
permutaciones_sinrep <- list(permutations(10, 1, conjunto), permutations(10, 2, conjunto),
permutations(10, 3, conjunto), permutations(10, 4, conjunto),
permutations(10, 5, conjunto), permutations(10, 6, conjunto),
permutations(10, 7, conjunto), permutations(10, 8, conjunto),
permutations(10, 9, conjunto), permutations(10, 10, conjunto))

III. permutaciones con repetición

Fórmula general para permutar un conjunto repitiendo sus elementos
Lightbox
Ejemplo de permutaciones con repetición para el caso de un conjunto de cuatro elementos

CÓDIGO EN R

library(gtools)

permutations(10, 10, conjunto, set = FALSE)

IV. COMBINACIONES SIN REPETICIÓN

Fórmula general para calcular combinaciones sin repetición

CÓDIGO EN R

comb_sin_rep = function(n, x) {
factorial(n) / (factorial(x) * factorial(n – x)) # combinaciones sin repetición
}

cantidad_comb_sin_rep <- 0
for(i in 1:10){
temp <- comb_sin_rep(10, i)
cantidad_comb_sin_rep <- cantidad_comb_sin_rep + temp
}

library(gtools)
combinaciones_sinrep <- list(combinations(10, 1, conjunto), combinations(10, 2, conjunto),
combinations(10, 3, conjunto), combinations(10, 4, conjunto),
combinations(10, 5, conjunto), combinations(10, 6, conjunto),
combinations(10, 7, conjunto), combinations(10, 8, conjunto),
combinations(10, 9, conjunto), combinations(10, 10, conjunto))

V. COMBINACIONES CON REPETICIÓN

Fórmula general para calcular combinaciones con repetición

CÓDIGO EN R

comb_con_rep = function(n, x) {
factorial(n + x – 1) / (factorial(x) * factorial(n – 1)) # combinaciones con repetición
}

cantidad_comb_con_rep <- 0
for(i in 1:10){
temp <- comb_con_rep(10, i)
cantidad_comb_con_rep <- cantidad_comb_con_rep + temp
}

combinaciones_conrep <- list(combinations(10, 1, conjunto, repeats.allowed=TRUE),
combinations(10, 2, conjunto, repeats.allowed=TRUE),
combinations(10, 3, conjunto, repeats.allowed=TRUE),
combinations(10, 4, conjunto, repeats.allowed=TRUE),
combinations(10, 5, conjunto, repeats.allowed=TRUE),
combinations(10, 6, conjunto, repeats.allowed=TRUE),
combinations(10, 7, conjunto, repeats.allowed=TRUE),
combinations(10, 8, conjunto, repeats.allowed=TRUE),
combinations(10, 9, conjunto, repeats.allowed=TRUE),
combinations(10, 10, conjunto, repeats.allowed=TRUE))

CUADRO RESUMEN

UNA INVESTIGACIÓN HISTÓRICA, TEÓRICA Y MATEMÁTICA SOBRE EL CARÁCTER DIALÉCTICO DE LOS FUNDAMENTOS EPISTEMOLÓGICOS DE LA COMPLEJIDAD EN LOS SISTEMAS DINÁMICOS NO-LINEALES DE LARGO PLAZO

ISADORE NABI

Abstracto

Desde Pierre-Simon Laplace en 1840 con su célebre “Ensayo Filosófico Sobre Probabilidades”, los filósofos y científicos se han interesado por dicotomía, sugerida por la observación de los hechos de la realidad, entre la incertidumbre y el determinismo. Henri Poincaré en 1908 coge el testigo de Laplace, comenzando así el esfuerzo consciente por unificarlas filosóficamente y dando así nacimiento a la Teoría del Caos, para que luego Edward Lorenz en 1963 diera a luz los Sistemas Complejos en su investigación titulada “Deterministic Nonperiodic Flow” y finalmente fue Benoit Mandelbrot en 1982 quien revolucionó la Geometría con el planteamiento de las superficies fractales en su obra “La Geometría Fractal de la Naturaleza”. Así como para los sistemas complejos ha sido de vital importancia ir comprendiendo unificadamente el caos y el determinismo, también fue para los sistemas filosóficos (particularmente la Antigua Grecia y del Idealismo Clásico Alemán) alcanzar precisión en las definiciones de las categorías esencia, forma, contenido, apariencia y fenómeno. Estas categorías filosóficas fueron trabajadas por los filósofos soviéticos en su búsqueda por comprender de manera holista la realidad, siendo plasmadas en el célebre “Diccionario Filosófico” publicado en 1971. La presente investigación plantea que la forma óptima de instrumentalizar esa visión filosófica es nutriéndola de los hallazgos realizados en el campo de la Teoría del Caos y también que la forma óptima de depurar teóricamente lo relacionado a los sistemas complejos es mediante su análisis a la luz de la Lógica Dialéctica-Materialista.

Palabras Clave: Materialismo Dialéctico, Sistemas Complejos, Fractales, Teoría del Caos, Escuela de Filosofía Soviética.

REREFENCIAS

Aravindh, M., Venkatesan, A., & Lakshmanan, M. (2018). Strange nonchaotic attractors for computation. Physical Review E, 97(5), 1-10. doi:https://doi.org/10.1103/PhysRevE.97.052212

Barnet, W., & Chen, P. (1988). Deterministic Chaos and Fractal Atrractors as Tools for NonParametric Dynamical Econometric Inference: With An Application to the Divisa Monetary Aggregates. Computational Mathematics and Modeling, 275-296. Obtenido de http://www.maths.usyd.edu.au/u/gottwald/preprints/testforchaos_MPI.pdf

Bjorvand, A. (1995). A New Approach to Intelligent Systems Theory. The Norwegian Institute of Technology, The University of Trondheim, Faculty of Electrical Engineering and Computer Science. Trondheim: The University of Trondheim. Recuperado el 15 de Abril de 2020, de https://www.anderstorvillbjorvand.com/_service/53/download/id/3378/name/19950428_project_report_fractal_logic.pdf

Elert, G. (11 de Agosto de 2020). Flow Regimes – The Physics Hypertextbook. Recuperado el 11 de Agosto de 2020, de https://physics.info/turbulence/

Gottwald, G., & Melbourne, I. (2016). The 0-1 Test for Chaos: A review. En U. Parlitz, E. G. Lega, R. Barrio, P. Cincotta, C. Giordano, C. Skokos, . . . J. Laskar, & C. G. Sokos (Ed.), Chaos Detection and Predictability (págs. 221-248). Berlin: Springer.

Halperin, B. (2019). Theory of dynamic critical phenomena. Physics Today, 72(2), 42-43. doi:10.1063/PT.3.4137

Jaynes, E. (2003). Probability Theory. The Logic of Science. Cambridge University Press: New York.

Kessler, D., & Greenkorn, R. (1999). Momentum, Heat, and Mass Transfer Fundamentals. New York: Marcel Denker, Inc.

Kilifarska, N., Bakmutov, V., & Melnyk, G. (2020). The Hidden Link Between Earth’s Magnetic Field and Climate. Leiden: Elsevier.

Landau, L. (1994). Física Teórica. Física Estadística (Segunda ed., Vol. 5). (S. Velayos, Ed., & E. L. Vázquez, Trad.) Barcelona: Reverté, S.A.

Laplace, P.-S. (1902). A Philosophical Essay on Probabilities (1 ed.). (E. M. Pinto, Trad.) London: JOHN WILEY & SONS. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lesne, A. (1998). Renormalization Methods. Critical Phenomena, Chaos, Fractal Structures. Baffins Lane, Chichester, West Sussex, England: John Wiley & Sons Ltd.

Lesne, A., & Laguës, M. (2012). Scale Invariance. From Phase Transitions to Turbulence (Primera edición, traducida del francés (que cuenta con dos ediciones) ed.). New York: Springer.

Li, S., & Li, H. (2006). Parallel AMR Code for Compressible MHD or HD Equations. Los Alamos National Laboratory, Mathematical Modeling and Analysis. Nuevo México: Applied Mathematics and Plasma Physics. Obtenido de https://web.archive.org/web/20160303182548/http://math.lanl.gov/Research/Highlights/amrmhd.shtml

Linder, J., Kohar, V., Kia, B., Hippke, M., Learned, J., & Ditto, W. (4 de Febrero de 2015). Strange nonchaotic stars. Recuperado el 16 de Abril de 2020, de Nonlinear Sciences > Chaotic Dynamics: https://arxiv.org/pdf/1501.01747.pdf

Lorenz, E. (1963). Deterministic Nonperiodic Flow. JOURNAL OF THE ATMOSPHERIC SCIENCES, 20, 130-141.

Mandelbrot, B. (1983). THE FRACTAL GEOMETRY OF NATURE. New York: W.H. Freeman and Company.

Marxist.org. (21 de Junio de 2018). Formal Logic and Dialectics. Recuperado el 14 de Abril de 2020, de The Meaning of Hegel’s Logic: https://www.marxists.org/reference/archive/hegel/help/mean05.htm

McCullagah, P., & Nelder, J. (1989). Generalized Linear Models (Segunda ed.). New York, United States of America: Chapman & Hall.

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para el TCL con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/UYRwHZaS

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para la LGN con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/wVAiBTQZ

Oestreicher, C. (2007). A history of chaos theory. Dialogues in Clinical Neuroscience, 9(3), 279–289. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202497/pdf/DialoguesClinNeurosci-9-279.pdf

Pezard, L., & Nandrino, J. (2001). Paradigme dynamique en psychopathologie: la “Théorie du chaos”, de la physique à la psychiatrie [Dynamic paradigm in psychopathology: “chaos theory”, from physics to psychiatry]. Encephale, 27(3), 260-268. Obtenido de https://pubmed.ncbi.nlm.nih.gov/11488256/

Poincaré, H. (1908). Chance. En H. Poincaré, Science and Method (págs. 64-90). London: THOMAS NELSON AND SONS. Obtenido de https://www.stat.cmu.edu/~cshalizi/462/readings/Poincare.pdf

Princeton University. (30 de Septiembre de 2019). The Fundamental Postulate . Obtenido de http://assets.press.princeton.edu/chapters/s3_9634.pdf

ResearchGate. (3 de Mayo de 2018). When should one use Fuzzy set theory and Rough set theory? Is there any clear-cut line of difference between them? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/When_should_one_use_Fuzzy_set_theory_and_Rough_set_theory_Is_there_any_clear-cut_line_of_difference_between_them

ResearchGate. (2 de Mayo de 2020). What is the difference between Fuzzy rough sets and Rough fuzzy sets? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/What_is_the_difference_between_Fuzzy_rough_sets_and_Rough_fuzzy_sets

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

Russell, K. (29 de Enero de 2014). Hypothesis testing. Recuperado el 15 de Abril de 2020, de Stats – Kevin Russell – University of Manitoba: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

Sharma, V. (2003). Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier. The Open Cardiovascular Medicine Journal(3), 110-123.

Stanford Encyclopedia of Philosophy. (4 de Febrero de 2002). Quantum Logic and Probability Theory. Recuperado el 6 de Julio de 2020, de https://plato.stanford.edu/entries/qt-quantlog/

Valdebenito, E. (1 de Julio de 2019). Fractales: La Geometría del Caos. Recuperado el 11 de Agosto de 2020, de viXra: https://vixra.org/pdf/1901.0152v1.pdf

Werndl, C. (2013). What Are the New Implications of Chaos for Unpredictability? The British Journal for the Philosophy of Science, 60(1), 1-25. doi:10.1093/bjps/axn053

Gráfica de Sedimentación

SOBRE EL ANÁLISIS DE COMPONENTES PRINCIPALES (PCA)

ISADORE NABI

REFERENCIAS

Adler, J. (2012). R in a Nutshell (Segunda ed.). Sebastopol, Crimea, Rusia: O’Reilly.

Alger, N. (4 de Marzo de 2013). Intuitively, what is the difference between Eigendecomposition and Singular Value Decomposition? Obtenido de StackExchange Mathematics: https://math.stackexchange.com/questions/320220/intuitively-what-is-the-difference-between-eigendecomposition-and-singular-valu

Bellman, R. (1972). Dynamic Programming (Sexta Impresión ed.). New Jersey: Princeton University Press.

Dunn, K. G. (3 de Marzo de 2021). Process Improvement Using Data. Hamilton, Ontario, Canadá: Learning Chemical Engineering. Obtenido de 6.5. Principal Component Analysis (PCA) | 6. Latent Variable Modelling: https://learnche.org/pid/PID.pdf?60da13

Jollife, I. (2002). Principal Component Analysis. New York: Springer-Verlag.

Minitab. (18 de Abril de 2019). Interpretar todos los estadísticos y gráficas para Análisis de componentes principales. Obtenido de Soporte de Minitab 18: https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/multivariate/how-to/principal-components/interpret-the-results/all-statistics-and-graphs/

MIT. (23 de Febrero de 2021). Linear transformations and their matrices. Obtenido de Linear Algebra: https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/linear-transformations-and-their-matrices/MIT18_06SCF11_Ses3.6sum.pdf

Nabi, I. (2020). Sobre los Estimadores de Bayes, el Análisis de Grupos y las Mixturas Gaussianas. Documento inédito.

Nabi, I. (3 de Abril de 2021). ¿Por qué se realiza un ajuste por re-escalamiento, normalización o estandarización sobre los datos en el contexto del aprendizaje automático? Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/04/03/por-que-se-realiza-un-ajuste-por-re-escalamiento-normalizacion-o-estandarizacion-sobre-los-datos-en-el-contexto-del-aprendizaje-automatico/

Nabi, I. (2 de Abril de 2021). Una Interpretación Multidisciplinaria de los Espacios Característicos, Vectores Característicos y Valores Característicos. Obtenido de El Blog de Isadore Nabi: https://marxistphilosophyofscience.com/wp-content/uploads/2021/04/una-interpretacion-multidisciplinaria-de-los-espacios-caracteristicos-vectores-caracteristicos-y-valores-caracteristicos-isadore-nabi-1.pdf

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, II(11), 559-572. Obtenido de https://www.semanticscholar.org/paper/LIII.-On-lines-and-planes-of-closest-fit-to-systems-F.R.S./cac33f91e59f0a137b46176d74cee55c7010c3f8

Stack Exchange. (13 de Marzo de 2015). Understanding proof of isometry implies isomorphism. Obtenido de Mathematics: https://math.stackexchange.com/questions/1188730/understanding-proof-of-isometry-implies-isomorphism/1188732

Starmer, J. (2 de Abril de 2018). Principal Component Analysis (PCA). Obtenido de StatQuest: https://www.youtube.com/watch?v=FgakZw6K1QQ

Universidad Carlos III de Madrid. (7 de Noviembre de 2006). Análisis de Componentes Principales. Obtenido de Proceso de extracción de factores: http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/AMult/tema3am.pdf

Universitat de Girona. (24 de Enero de 2002). Número de factores a conservar. Obtenido de Análisis factorial: http://www3.udg.edu/dghha/cat/secciogeografia/prac/models/factorial(5).htm

Weisstein, E. (26 de Marzo de 2021). Projection. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/Projection.html

Weisstein, E. (26 de Marzo de 2021). Transformation. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/Transformation.html

Wikipedia. (4 de Noviembre de 2020). Curse of dimensionality. Obtenido de Numerical Analysis: https://en.wikipedia.org/wiki/Curse_of_dimensionality

Wikipedia. (25 de Octubre de 2020). Isomorfismo. Obtenido de Álgebra: https://es.wikipedia.org/wiki/Isomorfismo

Wikipedia. (26 de Marzo de 2021). Isomorphism. Obtenido de Equivalence (mathematics): https://en.wikipedia.org/wiki/Isomorphism

Wikipedia. (22 de Marzo de 2021). Transcripción genética. Obtenido de Biosíntesis: https://es.wikipedia.org/wiki/Transcripci%C3%B3n_gen%C3%A9tica

UNA INTERPRETACIÓN MULTIDISCIPLINARIA DE LOS ESPACIOS CARACTERÍSTICOS, VECTORES CARACTERÍSTICOS Y VALORES CARACTERÍSTICOS

UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019

ISADORE NABI & A.B.A.

Como es ampliamente conocido, la matriz insumo-producto (de ahora en adelante, MIP) es un cuadro estadístico de naturaleza macroeconómica y de presentación desagregada, el cual cristaliza la totalidad de la actividad económica anual de forma desagregada, que a su vez representa una especie de radiografía del sistema de economía política capitalista. En este sentido, la MIP es de importancia fundamental para estudiar el desempeño del sistema, sea en un período anual o a largo plazo. En el análisis de los fenómenos económicos, el abordaje estadístico-matemático[1] de las MIP es característico de la escuela marxista conocida como Nueva Interpretación, muy poco usado es en otras escuelas marxistas y en la ortodoxia, i.e., la escuela neomarginalista (mal llamada “neoclásica”), el análisis insumo-producto no es de especial interés desde más o menos la prehistoria de la síntesis neomarginalista, que data de la época de Paul Samuelson y Robert Solow suscitada alrededor del punto medio del epílogo del siglo pasado.

Existen investigaciones teóricas, como la de (Kuroki, 1985), en las que se afirma que existe en el largo plazo un proceso de ecualización de las tasas de ganancia industriales si y solo si los sectores del sistema de economía política están altamente interrelacionados. Al respecto, señala Kuroki que “Entonces podríamos concluir que solo el sistema en el que ambos sectores usan relativamente mucho la producción del otro como su propio insumo y, por lo tanto, el grado de interdependencia técnica es grande, tiene la tasa uniforme de ganancia estable (es decir, por ejemplo, la economía donde se necesita mucho trigo para hacer hierro y al mismo tiempo se usa mucho hierro para producir trigo).” (Kuroki, 1985, págs. 48-49). En esta investigación, se desea demostrar empíricamente que ese supuesto siempre se cumple, al menos para el caso de la economía política hegemónica a nivel planetario de las últimas décadas, puesto que se asume que es el caso representativo. Por ello, se estudiará el caso de Estados Unidos, así como en su momento por los mismos motivos metodológicos Marx estudió a Inglaterra.

Debido a lo anterior, la MIP se erige, por consiguiente, en el recurso estadístico idóneo por antonomasia para semejante tarea. Como es sabido, la MIP está compuesta en sus filas por los diferentes sectores que componen la producción de una economía, mientras que en sus columnas está compuesta por el consumo productivo (consumo intermedio) intersectorial (incluyendo el autoconsumo sectorial), i.e., por el desglose del consumo intermedio que cada sector realiza de los otros sectores y de sí mismo, necesario para un determinado nivel de producto final. En el SCN de U.S., la MIP se presenta seccionada en dos partes, por un lado, los conocidos cuadros de producción y, por otro lado, los cuadros de usos. Los cuadros de producción contienen en las filas los sectores del sistema económico y en las columnas la producción desagregada (por el tipo de mercancía -según industria a la que pertenece- que compone su producción); estos cuadros no deben confundirse con los cuadros de oferta y los cuadros de utilización conocidos como COU.

Sin embargo, como se puede verificar en las diversas investigaciones que representan en este sentido el estado del arte [(Kliman, The law of value and laws of statistics: sectoral values and prices in the US economy, 1977-97, 2002), (Cockshott & Cottrell, Robust correlations between prices and labor values, 2005), (Kliman, Reply to Cockshott and Cottrell, 2005), (Zachariah, 2006), (Sánchez & Ferràndez, Valores, precios de producción y precios de mercado a partir de los datos de la economía española, 2010), (Cockshott, Cottrell, & Valle Baeza, The Empirics of the Labour Theory of Value: Reply to Nitzan and Bichler, 2014), (Sánchez & Montibeler, La teoría del valor trabajo y los precios en China, 2015) y (Cockshott, Cottrell, & Zachariah, Against the Kliman theory, 2019)], únicamente en el estudio de Zachariah en 2006 se realiza una investigación multi regional, mientras que en las demás únicamente se analiza la MIP de algún año en particular, no se han realizado previamente estudios econométricos a largo plazo y esa es otra novedad de esta metodología.

Como se verifica en (NABI, 2021), en el SCN de U.S. las tablas (tanto de producción como de usos) son construidas bajo un enfoque metodológico híbrido de dos pasos, en el cual en el primer paso se obtienen las tablas empíricas (que son las que interesan en esta investigación) y en el segundo su derivación matemática, en donde al proceso que genera las tablas obtenidas en el primer paso se le conoce como proceso de redefinición y reasignación. Así, como se verifica en la fuente citada, así como la MIP permite un estudio más en profundidad de un sistema de economía política capitalista, la redefinición y reasignación permiten un estudio más profundo de la MIP como resultado de lograr al interior de esta estructura estadística un mayor grado de homogeneidad entre sus componentes o, desde una concepción más general sobre los sistemas, un menor grado de heterogeneidad.

Econométricamente hablando, es válido concebir la interrelación entre dos variables como el grado de asociación entre las mismas (independientemente de la orientación de tal asociación) y en ese sentido, es válido entonces pensar que un coeficiente de correlación entre los productos y sus insumos [puesto que tales insumos son provistos por las demás industrias (y en función de ellas son colocados dentro de la MIP)], es un indicador estadístico válido para inferir la magnitud de la interrelación industrial existente (que es una noción cualitativa como tal -la de interrelación industrial-), considerando además que la forma que toma la MIP es lineal (no por ello su forma revela su esencia, pero ese es el instrumento estadístico diseñado que existe y es posible utilizar en investigación empírica, uno de concepción lineal) y que todas las investigaciones antes referidas apuntan hacia la misma dirección.

La metodología empírica aquí planteada busca construir series temporales con la ayuda del programa estadístico R que permitan medir la interrelación entre las industrias mediante la correlación entre los productos y los insumos (los empleados para producirlos) según industria.

El sistema de cuentas nacionales (de ahora en adelante, SCN) de los Estados Unidos (de ahora en adelante, U.S.) es presentado a través de los cuadros de producción y los cuadros de usos (por separado), bajo la etiqueta de “Supply Table” para el caso del cuadro que contiene la producción de mercancías desglosada según sector industrial y “Use Table” para el caso del cuadro que contiene los datos de los insumos consumidos por cada sector industrial j-ésimo en la producción de cada mercancía correspondiente a cada sector industrial i-ésima, en donde i denota las filas y j las columnas.

El objetivo de este documento es proveer una metodología empírica para que sea posible construir una serie temporal del período 1997-2019 de la producción total de cada una de las 71 industrias que conforman el sistema de economía política estadounidense (ese es el máximo nivel de desagregación para el que se disponen estadísticas macroeconómicas para ese período), así como también de los insumos que cada una de esas industrias consume y autoconsume para generar el nivel de producto reportado en la MIP. Así, antes de proceder a explicar la metodología empírica aquí planteada, es conveniente recordar al lector que los datos obtenidos de la base de datos original son matrices insumo-producto (descompuestas en un cuadro de producción y en cuadro de usos), que por definición son datos de sección cruzada. Este tipo de estructura de datos requiere, al no existir de forma armónica y continua las estadísticas intertemporales (a lo largo del tiempo) de la MIP, una construcción tal que les proporcione una continuidad armónica de manera que puedan ser transformadas exitosamente en datos de panel (que son secciones cruzadas estudiadas analizadas en términos de series temporales, en este caso diferentes MIP a lo largo del período 1997-2019) y esa es precisamente la necesidad que la metodología empírica aquí planteada resuelve de forma automatizada mediante el uso del programa estadístico R (creando para ello una función personalizada en R, ad hoc para esta necesidad de investigación particular).

A continuación, se presentan dos imágenes. Una imagen muestra en la proporción mínima suficiente la estructura del cuadro de producción, mientras que la otra hace lo propio con el cuadro de usos.

Fuente: (U.S. Bureau of Economic Analysis, 2021).

Fuente: (U.S. Bureau of Economic Analysis, 2021).

Así, partiendo de los cuadros de producción (tablas de producción) desde 1997 hasta 2019, así como también las los cuadros de usos (tablas de consumo intermedio o consumo productivo), se deben realizar los siguientes pasos.

  1. Se extrae del cuadro de producción su última fila, la cual contiene el total de la producción de cada una de las industrias que conforman el sistema económico (para el caso de Estados Unidos en el período analizado, son 23 cuadros de producción, una por año, desde 1997 hasta 2019) desagregada a nivel de los sectores industriales que la producen. Así, cada uno de los veintitrés cuadros de producción que contienen los datos anuales sobre 71 industrias, tendrá un vector fila, por consiguiente, compuesto por 71 elementos.
  2. Se toma el cuadro de usos y se transpone, es decir, se intercambia la localización del contenido de sus filas por el de sus columnas y viceversa. Lo anterior se hace con la finalidad de que el consumo intermedio o consumo productivo que originalmente está en las columnas del cuadro de usos se localice ahora en las filas del cuadro de producción transpuesto al cuadro de producción original. Esto resultará útil para facilitar la automatización de la construcción del cuadro que contendrá la serie temporal deseada.
  3. Combinando el vector fila extraído del cuadro de producción y el cuadro de usos transpuesto, se generan 71 nuevas tablas. Cada una de estas tablas estará compuesta en su primera columna por el período temporal en cuestión (desde 1997 hasta 2019), en su segunda columna se localizarán cada uno de los sectores industriales que proveen insumos a otros y a sí mismos para la producción, en la tercera columna se indicará el número del sector industrial según su posición en los cuadros de producción-usos (puesto que son veintitrés años de estudio para las industrias en general y para cada una en particular, el número que indica la posición de cada sector industrial se repetirá en veintitrés ocasiones), en la cuarta columna se localizará la producción total de cada sector y, finalmente, en las n-4 (para este caso serán 71 columnas restantes) se localizarán cada uno de los sectores industriales que generan la producción social global. Así, se conformarán 71 tablas con la configuración antes descrita (una por sector industrial) y de esa tabla se obtienen las correlaciones producto-insumo, que es lo que se ejecutará en el siguiente paso.
  4. La tabla construida en el paso 3, que contiene los datos de panel de los 71 sectores industriales que conforman la economía estadounidense para el período 1997-2019, puede ser separada en 71 partes, en donde cada parte contiene los datos de panel de cada uno de los 71 sectores industriales de forma individual. Así, sobre cada uno de estos 71 paneles de datos generados se realiza el cálculo de correlación (el vector columna de la producción total de cada industria correlacionado en el tiempo con cada uno de los n-ésimos vectores columna que representan el aporte a nivel de insumos intermedios que cada uno de los sectores industriales proveyeron al producto en cuestión), guardándolo en el programa estadístico R dentro de una estructura de datos vectorial-fila y, finalmente, “apilando” los vectores fila para conformar la matriz de correlaciones de Pearson.
  5. Posteriormente se calcula un promedio ponderado de los coeficientes de correlación de Pearson de cada uno de los 71 sectores industriales (que expresa el coeficiente de correlación promedio ponderado de cada sector industrial), en donde el factor de ponderación es la participación relativa de cada insumo en el consumo intermedio total.
  6. Finalmente, cada uno de estos coeficientes intrasectoriales promedio ponderado (pertenecientes a cada sector) se vuelven a promediar ponderadamente para obtener el coeficiente de correlación promedio ponderado de todos los sectores industriales, i.e., el coeficiente de correlación que resume la interrelación entre todos los sectores industriales del sistema de economía política estadounidense. Aquí, el factor de ponderación es la participación relativa de cada sector industrial en el sistema económico.

Es evidente que como en esta investigación lo que interesa es conocer la magnitud de la interrelación sectorial y no el sentido de esa interrelación (expresado en el signo del coeficiente de correlación obtenido), a la hora de estimar los promedios se realizan los cálculos con los valores absolutos de estos coeficientes. A continuación, se presentan imágenes que contienen ordinalmente y de forma mínima y suficiente los cuadros estadísticos resultantes de los procedimientos descritos en los pasos comprendidos del 3 al 6.

Fuente: Elaboración propia, bajo la metodología descrita en el paso 3.

Fuente: Elaboración propia, bajo la metodología descrita en el paso 4.

Fuente: Elaboración propia, con los datos de la imagen anterior y la metodología descrita en el paso 4.

Fuente: Elaboración propia, bajo la metodología descrita en el paso 5.

Fuente: Elaboración propia, con los datos de la imagen anterior y la metodología descrita en el paso 5.

Fuente: Elaboración propia, bajo la metodología descrita en el paso 6.

Fuente: Elaboración propia, con los datos de la imagen anterior y la metodología descrita en el paso 6.

Como puede observarse, el promedio de las correlaciones incrementó de aproximadamente 0.68 antes de la primera ronda de ponderaciones hasta aproximadamente 0.78 tras la segunda ronda de ponderaciones. Así, es necesario plantear que, aún cuando tal o cual lector pueda tener desavenencias con la doble ponderación realizada, ya con la primera ponderación el coeficiente de correlación de Pearson alcanzaba una magnitud de 0.735, recordando que 0.70 es el estándar usual para determinar si una correlación es alta o no, específicamente si la correlación es superior al 0.70 se considera fuerte; además, incluso en el escenario poco racional en el que alguien pudiese cuestionar la validez metodológica de la primera ronda de ponderaciones, el coeficiente de determinación de Pearson era de 0.683, lo que lo separa en apenas 0.027 (o 2.7%, que es lo mismo, i.e., es lo que le faltaría para ser, en este ejemplo, 0.71) de ser una correlación fuerte. Lo anterior se expresa en el cuadro presentado a continuación.

Fuente: (Mindrila & Balentyne, 2021, pág. 9).

En conclusión, lo planteado por (Kuroki, 1985) no debe considerarse una condición a verificar sino un supuesto fundamental de todo modelo teórico sobre los sistemas de economía política capitalista lo suficientemente evolucionados. Al lector interesado en replicar o aplicar esta metodología empírica, puede serle de interés el código o “script” en R mediante el que se diseñó la función personalizada empleada para realizar los pasos descritos por la metodología planteada, así como también la base de datos original y las transformaciones más importantes sobre la misma[2].

REFERENCIAS

Cockshott, P., & Cottrell, A. (2005). Robust correlations between prices and labor values. Cambridge Journal of Economics, 309-316.

Cockshott, P., Cottrell, A., & Valle Baeza, A. (2014). The Empirics of the Labour Theory of Value: Reply to Nitzan and Bichler. Investigación Económica, 115-134.

Cockshott, P., Cottrell, A., & Zachariah, D. (2019, Marzo 29). Against the Kliman theory. Retrieved Marzo 22, 2021, from Paul Cockshott: http://paulcockshott.co.uk/publication-archive/Talks/politicaleconomy/Against%20the%20Kliman%20price%20theory.pdf

Kliman, A. (2002). The law of value and laws of statistics: sectoral values and prices in the US economy, 1977-97. Cambridge Journal of Economics, 299-311.

Kliman, A. (2005). Reply to Cockshott and Cottrell. Cambridge Journal of Economics, 317-323.

Kliman, A. (2014). What is spurious correlation? A reply to Díaz and Osuna. Journal of Post Keynesian Economics, 21(2), 345-356.

Kuroki, R. (1985). The Equalizartion of the Rate of Profit Reconsidered. In W. Semmler, Competition, Instability, and Nonlinear Cycles (pp. 35-50). New York: Springer-Velag.

Mindrila, D., & Balentyne, P. (2021, Febrero 2). Scatterplots and Correlation. Retrieved from University of West Georgia: https://www.westga.edu/academics/research/vrc/assets/docs/scatterplots_and_correlation_notes.pdf

NABI, I. (2021, Abril 1). SOBRE LA METODOLOGÍA DEL U.S. BUREAU OF ECONOMIC ANALYSIS PARA LA REDEFINICIÓN Y REASIGNACIÓN DE PRODUCTOS EN LA MATRIZ INSUMO-PRODUCTO DE ESTADOS UNIDOS. Retrieved from ECONOMÍA POLÍTICA: https://marxianstatistics.com/2021/04/01/sobre-la-metodologia-del-u-s-bureau-of-economic-analysis-para-la-redefinicion-y-reasignacion-de-productos-en-la-matriz-insumo-producto-de-estados-unidos/

Sánchez, C., & Ferràndez, M. N. (2010, Octubre-diciembre). Valores, precios de producción y precios de mercado a partir de los datos de la economía española. Investigación Económica, 87-118. Retrieved from https://www.jstor.org/stable/42779601?seq=1

Sánchez, C., & Montibeler, E. E. (2015). La teoría del valor trabajo y los precios en China. Economia e Sociedade, 329-354.

U.S. Bureau of Economic Analysis. (2021, Abril 1). The Domestic Supply of Commodities by Industries (Millions of dollars). Retrieved from Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Make Tables/After Redefinitions – Production of commodities by industry after redefinition of secondary production ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=5&aggregation=sum

U.S. Bureau of Economic Analysis. (2021, Abril 1). The Use of Commodities by Industries. Retrieved from Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Use Tables/After Redefinitions/Producer Value – Use of commodities by industry after reallocation of inputs ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=6&aggregation=sum

Zachariah, D. (2006, Junio). Labour value and equalisation of profit rates: a multi-country study. Indian Development Review, 4, 1-20.


[1] Aquí distinguimos “estadístico-matemático” de “estadístico” en el sentido de que el primer concepto transita por terrenos que versan sobre la aplicación de la Estadística Matemática a problemas concretos de la realidad (i.e., el abordaje científico de los datos), mientras que el segundo puede ser en el sentido antes definido, puede ser en su sentido puramente descriptivo o puede incluso ser lo que se entiende popularmente por ello.

[2] https://mega.nz/folder/mhtSCTbK#KNuyJr-BW2xo4LEqrYJn_g

LA CONJETURA DE COLLATZ COMO FUNCIÓN PERSONALIZADA EN R STUDIO

ISADORE NABI

DIFERENCIAS ENTRE INTEGRALES DE LÍNEA, INTEGRALES MÚLTIPLES E INTEGRALES DE SUPERFICIE

ISADORE NABI

ANÁLISIS PRELIMINAR

Integrales de Línea: Aquí se ve el Teorema Fundamental del Cálculo para Integrales de Línea.

Integrales Múltiples: Aquí se ven el Teorema de Fubinni, los Dos Teoremas de Papus y el Teorema de Green sobre el plano.

Integrales de Superficie: Aquí se ve el Teorema de Stokes y también el Teorema de Gauss o Teorema de la Divergencia.

Sobre el Teorema de Stokes hay que decir que es un equivalente del Teorema de la Divergencia; en realidad tanto los teoremas de Green, de Gauss y de Stokes son equivalentes, aunque aplicables a espacios de diferente dimensionalidad.

UN ANÁLISIS MÁS A FONDO

Integrales de Línea

Con ellas se obtiene el área sobre la curva de una función. Este cálculo se realiza mediante la parametrización de la función (hacer depender a la función de un parámetro, el cual está definido como constante o una variable que aparece en una expresión matemática y cuyos distintos valores dan lugar a distintos casos en un problema) y luego sustituir la función original (la función a integrar) por la nueva función en términos de los parámetros establecidos (y sus diferenciales, obtenidos derivando los parámetros en cuestión). Esta parametrización se lleva a cabo tomando el punto de salida del vector como las constantes c de la parametrización misma y al vector director como los valores k que multiplican al parámetro t, por ejemplo, para el caso de x se tendría x = c + kt. Se dibujará un círculo en medio del signo de integral cuando sea la línea de una curva cerrada.

Fuente: https://www.gregschool.org/integrals/2017/9/27/introduction-to-line-integrals
Fuente: https://www.youtube.com/watch?v=w8Zf8M49aOs

Integrales Múltiples

Generaliza el concepto de área, donde una integral doble es un volumen, una integral triple es un hipervolumen y así sucesivamente. El Teorema de Fubbini permite cambiar el orden de integración de la función (para integrales triples como máximo). El Primer Teorema de Papus permite encontrar el volumen de un sólido de revolución obtenido por la rotación de un centroide alrededor de una recta en un plano; a su vez, el Segundo Teorema de Papus establece que el centroide de la reunión de dos regiones planas disjuntas A y B está en el segmento de recta que une el centroide A con el centroide B. Finalmente, el Teorema de Green expresa una integral doble extendida a una región R como una integral de línea a lo largo de la curva cerrada que constituye la frontera de R (es análogo al Segundo Teorema Fundamental del Cálculo para Integrales de Línea -el cual es en esencia idéntico al de las integrales simples-), por ello se ven primero las integrales de línea y después las de superficie). 

Fuente: https://www.algebrahd.org/multiple-integrals.html
Fuente: https://slideplayer.com/slide/13948962/

Integrales de Superficie

Aquí se calcula el área sobre la superficie de cada lado del sólido en cuestión, entendida esta como la integral doble del producto de la función F multiplicada por el vector normal, cuyos límites de integración exteriores tendrán que variar (obviamente) entre constantes y los interiores puede ser entre constantes o entre funciones. Sin embargo, para simplificar el cálculo de estas áreas, aparece el Teorema de Gauss o de la divergencia, el cual establece que, siendo F(x,y,z) = (P, Q, R), cuya divergencia viene dada por div(F) = dP/dx + dQ/dy + dR/dz, el proceso mencionado al inicio del párrafo será equivalente a la integral triple de la divergencia por dV, donde dV equivale a dx, dy y dz. En el Teorema de Gauss, la ecuación del plano (al despejarla) fungirá como límite de integración de z (que irá de cero a la función), con lo cual se planteará una integral triple en la región omega (los límites de integración de la integral triple en cuestión, cuyos límites de integración variarán según sea el caso, pero los límites exteriores tendrán que ser constantes y los interiores tienen la libertad de ser constantes o funciones), mientras que por el método z desaparece, pues se transforma en F = (x, y, g(x,y)), transformándose en varias integrales dobles (cuyos límites de integración variarán según sea el caso, pero conceptualmente de la misma forma en que lo hacen en las integrales múltiples, pues es una región R). Siempre se dibujará un círculo sobre las integrales cuando se trate de encontrar la integral de superficie de un campo vectorial sobre una superficie cerrada.

Fuente: https://slideplayer.com/slide/13378715/